27,820 research outputs found
Burst-by-Burst Adaptive Decision Feedback Equalised TCM, TTCM and BICM for H.263-Assisted Wireless Video Telephony
Decision Feedback Equaliser (DFE) aided wideband Burst-by-Burst (BbB) Adaptive Trellis Coded Modulation (TCM), Turbo Trellis Coded Modulation (TTCM) and Bit-Interleaved Coded Modulation (BICM) assisted H.263-based video transceivers are proposed and characterised in performance terms when communicating over the COST 207 Typical Urban wideband fading channel. Specifically, four different modulation modes, namely 4QAM, 8PSK, 16QAM and 64QAM are invoked and protected by the above-mentioned coded modulation schemes. The TTCM assisted scheme was found to provide the best video performance, although at the cost of the highest complexity. A range of lower-complexity arrangements will also be characterised. Finally, in order to confirm these findings in an important practical environment, we have also investigated the adaptive TTCM scheme in the CDMA-based Universal Mobile Telecommunications System's (UMTS) Terrestrial Radio Access (UTRA) scenario and the good performance of adaptive TTCM scheme recorded when communicating over the COST 207 channels was retained in the UTRA environment
Acoustically evoked potentials in two cephalopods inferred using the auditory brainstem response (ABR) approach
It is still a matter of debate whether cephalopods can detect sound frequencies above 400 Hz. So far there is no proof for the detection of underwater sound above 400 Hz via a physiological approach. The controversy of whether cephalopods have a sound detection ability above 400 Hz was tested using the auditory brainstem response (ABR) approach, which has been successfully applied in fish, crustaceans, amphibians, reptiles and birds. Using ABR we found that auditory evoked potentials can be obtained in the frequency range 400 to 1500 Hz (Sepiotheutis lessoniana) and 400 to 1000 Hz (Octopus vulgaris), respectively. The thresholds of S. lessoniana were generally lower than those of O. vulgaris
Dynamics of composite Haldane spin chains in IPA-CuCl3
Magnetic excitations in the quasi-one-dimensional antiferromagnet IPA-CuCl3
are studied by cold neutron inelastic scattering. Strongly dispersive gap
excitations are observed. Contrary to previously proposed models, the system is
best described as an asymmetric quantum spin ladder. The observed spectrum is
interpreted in terms of ``composite'' Haldane spin chains. The key difference
from actual S=1 chains is a sharp cutoff of the single-magnon spectrum at a
certain critical wave vector.Comment: 4 pages 4 figure
Constraints on a new alternative model to dark energy
The recent type Ia supernova data suggest that the universe is accelerating
now and decelerated in recent past. This may provide the evidence that the
standard Friedmann equation needs to be modified. We analyze in detail a new
model in the context of modified Friedmann equation using the supernova data
published by the High- Supernova Search Team and the Supernova Cosmology
Project. The new model explains recent acceleration and past deceleration.
Furthermore, the new model also gives a decelerated universe in the future.Comment: 12 pages, 5 figures, use ws-ijmpd, minor changes made. In the new
version, a detailed derivation of the model is give
Spin Dynamics of the Spin-1/2 Kagome Lattice Antiferromagnet ZnCu_3(OH)_6Cl_2
We have performed thermodynamic and neutron scattering measurements on the
S=1/2 kagome lattice antiferromagnet Zn Cu_3 (OH)_6 Cl_2. The susceptibility
indicates a Curie-Weiss temperature of ~ -300 K; however, no magnetic order is
observed down to 50 mK. Inelastic neutron scattering reveals a spectrum of low
energy spin excitations with no observable gap down to 0.1 meV. The specific
heat at low-T follows a power law with exponent less than or equal to 1. These
results suggest that an unusual spin-liquid state with essentially gapless
excitations is realized in this kagome lattice system.Comment: 4 pages, 3 figures; v2: Updates to authors list and references; v3:
Updated version; v4: Published versio
Surface versus bulk characterization of the electronic inhomogeneity in a VO_{2} film
We investigated the inhomogeneous electronic properties at the surface and
interior of VO_{2} thin films that exhibit a strong first-order metal-insulator
transition (MIT). Using the crystal structural change that accompanies a VO_{2}
MIT, we used bulk-sensitive X-ray diffraction (XRD) measurements to estimate
the fraction of metallic volume p^{XRD} in our VO_{2} film. The temperature
dependence of the p was very closely correlated with the dc
conductivity near the MIT temperature, and fit the percolation theory
predictions quite well: (p - p_{c})^{t} with t = 2.00.1
and p_{c} = 0.160.01. This agreement demonstrates that in our VO
thin film, the MIT should occur during the percolation process. We also used
surface-sensitive scanning tunneling spectroscopy (STS) to investigate the
microscopic evolution of the MIT near the surface. Similar to the XRD results,
STS maps revealed a systematic decrease in the metallic phase as temperature
decreased. However, this rate of change was much slower than the rate observed
with XRD, indicating that the electronic inhomogeneity near the surface differs
greatly from that inside the film. We investigated several possible origins of
this discrepancy, and postulated that the variety in the strain states near the
surface plays an important role in the broad MIT observed using STS. We also
explored the possible involvement of such strain effects in other correlated
electron oxide systems with strong electron-lattice interactions.Comment: 27 pages and 7 figure
Effects of momentum conservation on the analysis of anisotropic flow
We present a general method for taking into account correlations due to
momentum conservation in the analysis of anisotropic flow, either by using the
two-particle correlation method or the standard flow vector method. In the
latter, the correlation between the particle and the flow vector is either
corrected through a redefinition (shift) of the flow vector, or subtracted
explicitly from the observed flow coefficient. In addition, momentum
conservation contributes to the reaction plane resolution. Momentum
conservation mostly affects the first harmonic in azimuthal distributions,
i.e., directed flow. It also modifies higher harmonics, for instance elliptic
flow, when they are measured with respect to a first harmonic event plane such
as one determined with the standard transverse momentum method. Our method is
illustrated by application to NA49 data on pion directed flow.Comment: RevTeX 4, 10 pages, 1 eps figure. Version accepted for publication in
Phys Rev
Comparison of chemical profiles and effectiveness between Erxian decoction and mixtures of decoctions of its individual herbs : a novel approach for identification of the standard chemicals
Acknowledgements This study was partially supported by grants from the Seed Funding Programme for Basic Research (Project Number 201211159146 and 201411159213), the University of Hong Kong. We thank Mr Keith Wong and Ms Cindy Lee for their technical assistances.Peer reviewedPublisher PD
- …