140 research outputs found

    Common adversaries form alliances: modelling complex networks via anti-transitivity

    Full text link
    Anti-transitivity captures the notion that enemies of enemies are friends, and arises naturally in the study of adversaries in social networks and in the study of conflicting nation states or organizations. We present a simplified, evolutionary model for anti-transitivity influencing link formation in complex networks, and analyze the model's network dynamics. The Iterated Local Anti-Transitivity (or ILAT) model creates anti-clone nodes in each time-step, and joins anti-clones to the parent node's non-neighbor set. The graphs generated by ILAT exhibit familiar properties of complex networks such as densification, short distances (bounded by absolute constants), and bad spectral expansion. We determine the cop and domination number for graphs generated by ILAT, and finish with an analysis of their clustering coefficients. We interpret these results within the context of real-world complex networks and present open problems

    On Minimizing Crossings in Storyline Visualizations

    Get PDF
    In a storyline visualization, we visualize a collection of interacting characters (e.g., in a movie, play, etc.) by xx-monotone curves that converge for each interaction, and diverge otherwise. Given a storyline with nn characters, we show tight lower and upper bounds on the number of crossings required in any storyline visualization for a restricted case. In particular, we show that if (1) each meeting consists of exactly two characters and (2) the meetings can be modeled as a tree, then we can always find a storyline visualization with O(nlogn)O(n\log n) crossings. Furthermore, we show that there exist storylines in this restricted case that require Ω(nlogn)\Omega(n\log n) crossings. Lastly, we show that, in the general case, minimizing the number of crossings in a storyline visualization is fixed-parameter tractable, when parameterized on the number of characters kk. Our algorithm runs in time O(k!2klogk+k!2m)O(k!^2k\log k + k!^2m), where mm is the number of meetings.Comment: 6 pages, 4 figures. To appear at the 23rd International Symposium on Graph Drawing and Network Visualization (GD 2015

    Universal Geometric Graphs

    Full text link
    We introduce and study the problem of constructing geometric graphs that have few vertices and edges and that are universal for planar graphs or for some sub-class of planar graphs; a geometric graph is \emph{universal} for a class H\mathcal H of planar graphs if it contains an embedding, i.e., a crossing-free drawing, of every graph in H\mathcal H. Our main result is that there exists a geometric graph with nn vertices and O(nlogn)O(n \log n) edges that is universal for nn-vertex forests; this extends to the geometric setting a well-known graph-theoretic result by Chung and Graham, which states that there exists an nn-vertex graph with O(nlogn)O(n \log n) edges that contains every nn-vertex forest as a subgraph. Our O(nlogn)O(n \log n) bound on the number of edges cannot be improved, even if more than nn vertices are allowed. We also prove that, for every positive integer hh, every nn-vertex convex geometric graph that is universal for nn-vertex outerplanar graphs has a near-quadratic number of edges, namely Ωh(n21/h)\Omega_h(n^{2-1/h}); this almost matches the trivial O(n2)O(n^2) upper bound given by the nn-vertex complete convex geometric graph. Finally, we prove that there exists an nn-vertex convex geometric graph with nn vertices and O(nlogn)O(n \log n) edges that is universal for nn-vertex caterpillars.Comment: 20 pages, 8 figures; a 12-page extended abstracts of this paper will appear in the Proceedings of the 46th Workshop on Graph-Theoretic Concepts in Computer Science (WG 2020

    Colored Non-Crossing Euclidean Steiner Forest

    Full text link
    Given a set of kk-colored points in the plane, we consider the problem of finding kk trees such that each tree connects all points of one color class, no two trees cross, and the total edge length of the trees is minimized. For k=1k=1, this is the well-known Euclidean Steiner tree problem. For general kk, a kρk\rho-approximation algorithm is known, where ρ1.21\rho \le 1.21 is the Steiner ratio. We present a PTAS for k=2k=2, a (5/3+ε)(5/3+\varepsilon)-approximation algorithm for k=3k=3, and two approximation algorithms for general~kk, with ratios O(nlogk)O(\sqrt n \log k) and k+εk+\varepsilon

    The Effect of Planarization on Width

    Full text link
    We study the effects of planarization (the construction of a planar diagram DD from a non-planar graph GG by replacing each crossing by a new vertex) on graph width parameters. We show that for treewidth, pathwidth, branchwidth, clique-width, and tree-depth there exists a family of nn-vertex graphs with bounded parameter value, all of whose planarizations have parameter value Ω(n)\Omega(n). However, for bandwidth, cutwidth, and carving width, every graph with bounded parameter value has a planarization of linear size whose parameter value remains bounded. The same is true for the treewidth, pathwidth, and branchwidth of graphs of bounded degree.Comment: 15 pages, 6 figures. To appear at the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Markov propagation of allosteric effects in biomolecular systems: application to GroEL–GroES

    Get PDF
    We introduce a novel approach for elucidating the potential pathways of allosteric communication in biomolecular systems. The methodology, based on Markov propagation of ‘information' across the structure, permits us to partition the network of interactions into soft clusters distinguished by their coherent stochastics. Probabilistic participation of residues in these clusters defines the communication patterns inherent to the network architecture. Application to bacterial chaperonin complex GroEL–GroES, an allostery-driven structure, identifies residues engaged in intra- and inter-subunit communication, including those acting as hubs and messengers. A number of residues are distinguished by their high potentials to transmit allosteric signals, including Pro33 and Thr90 at the nucleotide-binding site and Glu461 and Arg197 mediating inter- and intra-ring communication, respectively. We propose two most likely pathways of signal transmission, between nucleotide- and GroES-binding sites across the cis and trans rings, which involve several conserved residues. A striking observation is the opposite direction of information flow within cis and trans rings, consistent with negative inter-ring cooperativity. Comparison with collective modes deduced from normal mode analysis reveals the propensity of global hinge regions to act as messengers in the transmission of allosteric signals

    k is the Magic Number -- Inferring the Number of Clusters Through Nonparametric Concentration Inequalities

    Full text link
    Most convex and nonconvex clustering algorithms come with one crucial parameter: the kk in kk-means. To this day, there is not one generally accepted way to accurately determine this parameter. Popular methods are simple yet theoretically unfounded, such as searching for an elbow in the curve of a given cost measure. In contrast, statistically founded methods often make strict assumptions over the data distribution or come with their own optimization scheme for the clustering objective. This limits either the set of applicable datasets or clustering algorithms. In this paper, we strive to determine the number of clusters by answering a simple question: given two clusters, is it likely that they jointly stem from a single distribution? To this end, we propose a bound on the probability that two clusters originate from the distribution of the unified cluster, specified only by the sample mean and variance. Our method is applicable as a simple wrapper to the result of any clustering method minimizing the objective of kk-means, which includes Gaussian mixtures and Spectral Clustering. We focus in our experimental evaluation on an application for nonconvex clustering and demonstrate the suitability of our theoretical results. Our \textsc{SpecialK} clustering algorithm automatically determines the appropriate value for kk, without requiring any data transformation or projection, and without assumptions on the data distribution. Additionally, it is capable to decide that the data consists of only a single cluster, which many existing algorithms cannot

    Tight Proofs of Space and Replication

    Get PDF
    We construct a concretely practical proof-of-space (PoS) with arbitrarily tight security based on stacked depth robust graphs and constant-degree expander graphs. A proof-of-space (PoS) is an interactive proof system where a prover demonstrates that it is persistently using space to store information. A PoS is arbitrarily tight if the honest prover uses exactly N space and for any ϵ>0\epsilon > 0 the construction can be tuned such that no adversary can pass verification using less than 1ϵN1-\epsilon N space. Most notably, the degree of the graphs in our construction are independent of ϵ\epsilon, and the number of layers is only O(log(1/ϵ))O(\log(1/\epsilon)). The proof size is O(d/ϵ)O(d/\epsilon). The degree dd depends on the depth robust graphs, which are only required to maintain Ω(N)\Omega(N) depth in subgraphs on 80% of the nodes. Our tight PoS is also secure against parallel attacks. Tight proofs of space are necessary for proof-of-replication (PoRep), which is a publicly verifiable proof that the prover is dedicating unique resources to storing one or more retrievable replicas of a file. Our main PoS construction can be used as a PoRep, but data extraction is as inefficient as replica generation. We present a second variant of our construction called ZigZag PoRep that has fast/parallelizable data extraction compared to replica generation and maintains the same space tightness while only increasing the number of levels by roughly a factor two

    Semi-Markov Graph Dynamics

    Get PDF
    In this paper, we outline a model of graph (or network) dynamics based on two ingredients. The first ingredient is a Markov chain on the space of possible graphs. The second ingredient is a semi-Markov counting process of renewal type. The model consists in subordinating the Markov chain to the semi-Markov counting process. In simple words, this means that the chain transitions occur at random time instants called epochs. The model is quite rich and its possible connections with algebraic geometry are briefly discussed. Moreover, for the sake of simplicity, we focus on the space of undirected graphs with a fixed number of nodes. However, in an example, we present an interbank market model where it is meaningful to use directed graphs or even weighted graphs.Comment: 25 pages, 4 figures, submitted to PLoS-ON

    Spectral renormalization group theory on networks

    Full text link
    Discrete amorphous materials are best described in terms of arbitrary networks which can be embedded in three dimensional space. Investigating the thermodynamic equilibrium as well as non-equilibrium behavior of such materials around second order phase transitions call for special techniques. We set up a renormalization group scheme by expanding an arbitrary scalar field living on the nodes of an arbitrary network, in terms of the eigenvectors of the normalized graph Laplacian. The renormalization transformation involves, as usual, the integration over the more "rapidly varying" components of the field, corresponding to eigenvectors with larger eigenvalues, and then rescaling. The critical exponents depend on the particular graph through the spectral density of the eigenvalues.Comment: 17 pages, 3 figures, presented at the Continuum Models and Discrete Systems (CMDS-12), 21-25 Feb 2011, Saha Institute of Nuclear Physics, Kolkata, Indi
    corecore