30 research outputs found

    Oil palm expansion increases the vectorial capacity of dengue vectors in Malaysian Borneo

    Get PDF
    Changes in land-use and the associated shifts in environmental conditions can have large effects on the transmission and emergence of mosquito-borne disease. Mosquito-borne disease are particularly sensitive to these changes because mosquito growth, reproduction, survival and susceptibility to infection are all thermally sensitive traits, and land use change dramatically alters local microclimate. Predicting disease transmission under environmental change is increasingly critical for targeting mosquito-borne disease control and for identifying hotspots of disease emergence. Mechanistic models offer a powerful tool for improving these predictions. However, these approaches are limited by the quality and scale of temperature data and the thermal response curves that underlie predictions. Here, we used fine-scale temperature monitoring and a combination of empirical, laboratory and temperature-dependent estimates to estimate the vectorial capacity of Aedes albopictus mosquitoes across a tropical forest-oil palm plantation conversion gradient in Malaysian Borneo. We found that fine-scale differences in temperature between logged forest and oil palm plantation sites were not sufficient to produce differences in temperature-dependent demographic trait estimates using published thermal performance curves. However, when measured under field conditions a key parameter, adult abundance, differed significantly between land-use types, resulting in estimates of vectorial capacity that were 1.5 times higher in plantations than in forests. The prediction that oil palm plantations would support mosquito populations with higher vectorial capacity was robust to uncertainties in our adult survival estimates. These results provide a mechanistic basis for understanding the effects of forest conversion to agriculture on mosquito-borne disease risk, and a framework for interpreting emergent relationships between land-use and disease transmission. As the burden of Ae. albopictus-vectored diseases, such as dengue virus, increases globally and rising demand for palm oil products drives continued expansion of plantations, these findings have important implications for conservation, land management and public health policy at the global scale

    Selective-logging and oil palm: Multitaxon impacts, biodiversity indicators, and trade-offs for conservation planning

    Get PDF
    Strong global demand for tropical timber and agricultural products has driven large-scale logging and subsequent conversion of tropical forests. Given that the majority of tropical landscapes have been or will likely be logged, the protection of biodiversity within tropical forests thus depends on whether species can persist in these economically exploited lands, and if species cannot persist, whether we can protect enough primary forest from logging and conversion. However, our knowledge of the impact of logging and conversion on biodiversity is limited to a few taxa, often sampled in different locations with complex land-use histories, hampering attempts to plan cost-effective conservation strategies and to draw conclusions across taxa. Spanning a land-use gradient of primary forest, once- and twice-logged forests, and oil palm plantations, we used traditional sampling and DNA metabarcoding to compile an extensive data set in Sabah, Malaysian Borneo for nine vertebrate and invertebrate taxa to quantify the biological impacts of logging and oil palm, develop cost-effective methods of protecting biodiversity, and examine whether there is congruence in response among taxa. Logged forests retained high species richness, including, on average, 70% of species found in primary forest. In contrast, conversion to oil palm dramatically reduces species richness, with significantly fewer primary-forest species than found on logged forest transects for seven taxa.Using a systematic conservation planning analysis, we show that efficient protection of primary-forest species is achieved with land portfolios that include a large proportion of logged-forest plots. Protecting logged forests is thus a cost-effective method of protecting an ecologically and taxonomically diverse range of species, particularly when conservation budgets are limited. Six indicator groups (birds, leaf-litter ants, beetles, aerial hymenopterans, flies, and true bugs) proved to be consistently good predictors of the response of the other taxa to logging and oil palm. Our results confidently establish the high conservation value of logged forests and the low value of oil palm. Cross-taxon congruence in responses to disturbance also suggests that the practice of focusing on key indicator taxa yields important information of general biodiversity in studies of logging and oil palm

    Oil Palm Research in Context: Identifying the Need for Biodiversity Assessment

    Get PDF
    Oil palm cultivation is frequently cited as a major threat to tropical biodiversity as it is centered on some of the world's most biodiverse regions. In this report, Web of Science was used to find papers on oil palm published since 1970, which were assigned to different subject categories to visualize their research focus. Recent years have seen a broadening in the scope of research, with a slight growth in publications on the environment and a dramatic increase in those on biofuel. Despite this, less than 1% of publications are related to biodiversity and species conservation. In the context of global vegetable oil markets, palm oil and soyabean account for over 60% of production but are the subject of less than 10% of research. Much more work must be done to establish the impacts of habitat conversion to oil palm plantation on biodiversity. Results from such studies are crucial for informing conservation strategies and ensuring sustainable management of plantations

    Riparian buffers can help mitigate biodiversity declines in oil palm agriculture

    Get PDF
    Agricultural expansion is a primary driver of biodiversity decline in forested regions of the tropics. Consequently, it is important to understand the conservation value of remnant forests in production landscapes. In a tropical landscape dominated by oil palm (Elaeis guineensis), we characterized faunal communities across eight taxa occurring within riparian forest buffers, which are legally protected alongside rivers, and compared them to nearby recovering logged forest. Buffer width was the main predictor of species richness and abundance, with widths of 40–100 m on each side of the river supporting broadly equivalent levels of biodiversity as compared to logged forest. However, width responses varied markedly among taxa, and buffers often lacked forest-dependent species. Much wider buffers than are currently mandated are needed to safeguard most species. The largest biodiversity gains are achieved by increasing relatively narrow buffers. To provide optimal conservation outcomes in tropical production landscapes, we encourage policy makers to prescribe width requirements for key taxa and different landscape contexts

    El Niño drought and tropical forest conversion synergistically determine mosquito development rate

    Get PDF
    Extreme warming events can profoundly alter the transmission dynamics of mosquito–borne diseases by affecting the physiology of mosquito vectors. At local scales, temperatures are determined largely by vegetation structure and can be dramatically altered by drivers of land-use change (e.g. forest conversion). Disturbance activities can also hinder the buffering capacity of natural habitats, making them more susceptible to seasonal climate variation and extreme weather events (e.g. droughts). Using experiments spanning three years, we demonstrate that variation in microclimates due to forest conversion dramatically increases development rates in Aedes albopictus mosquitoes. However, this effect was mediated by an El Niño Southern Oscillation (ENSO) drought event. In normal years, mean temperatures did not differ between land-use types, however mosquitoes reared in oil palm plantations typically emerged 2-3 days faster than in logged forests. During an ENSO drought, mean temperatures did differ between land-use types, but surprisingly this did not result in different mosquito development rates. Driving this idiosyncratic response may be the differences in daily temperature fluctuations between the land-use types that either push mosquito larvae towards optimal development, or over the thermal optimum, thereby reducing fitness. This work highlights the importance of considering the synergistic effects of land-use and seasonal climate variations for predicting a key disease transmission-relevant mosquito trait

    Tropical logging and deforestation impacts multiple scales of weevil beta-diversity

    No full text
    Half of Borneo's forest has been logged and oil palm plantations have replaced millions of hectares of forest since the 1970's. While this extensive land-use change has been shown to reduce species richness across landscapes, there is limited current knowledge on how deforestation affects the spatial arrangement of ecological communities. Identifying responses of beta-diversity to land-use change may reveal processes which could mitigate total biodiversity loss. We sampled weevils (superfamily: Curculionoidea) at multiple spatial scales across a land-use gradient at the Stability of Altered Forest Ecosystems (SAFE) Project in Sabah, Malaysia, in 2011–2012. We caught 160 taxa of weevil and calculated the response of alpha-diversity (1-ha scale) and beta-diversity (10-, 100-, and 1000-ha scales) to disturbance. Alpha-diversity of weevils was greatest in unlogged forest but landscape-level beta-diversity (100- and 1000-ha scale) was maintained across logged and unlogged due to high rates of spatial turnover. Turnover at smallest spatial scales (10-ha) in unlogged forest was highest in rough, flat terrain but smooth, sloping terrain had highest turnover in logged forest. Logging of flat terrain at small spatial scales has potential to decrease beta-diversity at greater scales. Beta-diversity at landscape-level in oil palm plantation remained high but was propagated by abundance shifts of few species instead of spatial turnover of many species. High temporal beta-diversity in unlogged forest was evident through periodic fluxes in abundance of many weevil species. We conclude that unlogged forest is irreplaceable for high beetle biodiversity but increased spatial turnover in some terrains may help conserve beetle communities in heavily-degraded landscapes

    Movement of forest‐dependent dung beetles through riparian buffers in Bornean oil palm plantations

    No full text
    1. Fragmentation of tropical forests is increasing globally, with negative impacts for biodiversity. In Southeast Asia, expansion of oil palm agriculture has caused widespread deforestation, forest degradation and fragmentation. 2. Persistence of forest-dependent species within these fragmented landscapes is likely to depend on the capacity of individuals to move between forest patches. In oil palm landscapes, riparian buffers along streams and rivers are potential movement corridors, but their use by moving animals is poorly studied. 3. We examined how six dung beetle species traversed riparian buffers connected to a continuous forest reserve area within an oil palm plantation in Sabah, Malaysian Borneo. We used a mark–release–recapture study and a new Bayesian Joint Species Movement Modelling (JSMM) approach, extended to a continuous capture process model. 4. Dung beetle species were fairly generalist in their habitat use, but two species showed a statistically supported preference for riparian buffer forest over oil palm, and one species showed a strong preference for forest reserve over riparian buffer, indicating the importance of forested areas within oil palm landscapes for some species. 5. A land-use change simulation indicated that the loss of riparian buffers in oil palm will result in reduced movement by forest-dependent species. 6. Synthesis and applications. Our results provide evidence for the use of riparian buffers in oil palm plantations for forest-dependent dung beetle species, strengthening the case for their retention, restoration and re-establishment. Furthermore, our study demonstrates the wider applicability of the Joint Species Movement Modelling (JSMM) framework to assess movement behaviour of species in fragmented landscapes, a vital tool for future forest and landscape management and conservation prioritisation exercises

    Trap type affects dung beetle taxonomic and functional diversity in Bornean tropical forests

    Get PDF
    Baited pitfall traps (BPTs) and flight intercept traps (FITs) are the most common methods employed for sampling dung beetle communities. These methods vary in their efficacy and are affected by factors such as the bait types used and the dispersal abilities of different dung beetle species. We present the first quantitative comparison of the taxonomic and functional diversity, and community composition of dung beetles caught in BPTs and FITs in Bornean tropical forests. We show that BPTs and FITs captured complementary communities with different functional traits, and that BPTs captured more functionally diverse communities. We therefore recommend using a combination of both baited BPTs and FITs for studies assessing the composition of dung beetles across habitat types. Our results also highlight that it is important to consider how trap type affects the trait composition of communities when relating dung beetle communities and functional traits to ecological functioning. We suggest modifications to FITs based on the design of harp traps to increase their effectiveness in capturing larger-bodied beetles
    corecore