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Abstract 1 

 2 

Extreme warming events can profoundly alter the transmission dynamics of mosquito–borne 3 

diseases by affecting mosquito life-history traits (e.g. survival, growth and reproduction). At 4 

local scales, temperatures are determined largely by vegetation structure and can be dramatically 5 

altered by drivers of land-use change (e.g. forest conversion). Disturbance activities can also 6 

hinder the buffering capacity of natural habitats, making them more susceptible to seasonal 7 

climate variation and extreme weather events (e.g. droughts). In experiments spanning three 8 

years, we investigated the interactive effects of tropical forest conversion and climate on fine-9 

scale temperature, and the consequences for mosquito larval development. This study was 10 

conducted in the northern Malaysian Bornean state of Sabah using local Aedes albopictus 11 

mosquitoes; important vectors of dengue, chikungunya and Zika viruses. We demonstrate that 12 

variation in microclimates due to forest conversion dramatically increases development rates in 13 

Ae. albopictus mosquitoes. However, this effect was mediated by an El Niño Southern 14 

Oscillation (ENSO) drought event. In normal years, mean temperatures did not differ between 15 

land-use types, however mosquitoes reared in oil palm plantations typically emerged 2-3 days 16 

faster than in logged forests. During an ENSO drought, mean temperatures did differ between 17 

land-use types, but surprisingly this did not result in different mosquito development rates. 18 

Driving this idiosyncratic response may be the differences in daily temperature fluctuations 19 

between the land-use types that either push mosquito larvae towards optimal development, or 20 

over the thermal optimum, thereby reducing fitness. This work highlights the importance of 21 
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 2 

considering the synergistic effects of land-use and seasonal climate variations for predicting the 22 

thermal response of a key mosquito life-history trait driving disease transmission dynamics.  23 

 24 

 25 

1. Introduction 1 

  2 

Extreme warming events can influence the distribution and dynamics of vector-borne disease 3 

transmission (Messina et al. 2015; Vincenti-Gonzalez et al. 2018). Inter-annual climate 4 

variations, such as the El Niño southern oscillation (ENSO), have been linked to outbreaks of 5 

dengue (Vincenti-Gonzalez et al. 2018) and malaria (Hashizume et al. 2009; Chaves et al. 2012) 6 

across the globe. Dramatic changes to local climates driven by land conversion (e.g. 7 

deforestation) are also associated with altered transmission dynamics of mosquito-borne diseases 8 

(Conn et al. 2002; Fornace et al. 2016). However, at both scales the relationships between 9 

extrinsic drivers and patterns of disease remains unclear (e.g. Johansson et al. 2009), 10 

highlighting the need for better understanding of the interactions between the environment, 11 

mosquitoes, and pathogen transmission.  12 

 13 

Composite metrics of mosquito-borne disease transmission are typically derived using mosquito 14 

functional or life-history traits (henceforth used synonymously). For example, vectorial capacity, 15 

which estimates the number of potentially infectious bites arising from all mosquitoes biting a 16 

single human on a single day, incorporates parameters relating to mosquito survival, adult 17 

feeding behaviour and vector competence. Small changes in these key parameters can 18 

profoundly alter transmission dynamics (Garrett-Jones 1964). As mosquitoes are small-bodied 19 

ectotherms, these life-history traits are all sensitive to ambient temperature (Lyimo et al. 1992; 20 

Delatte et al. 2009). The thermal sensitivity of a life-history trait is often summarised as a 21 

nonlinear asymmetric curve, comprising a thermal optimum (Topt) at which the performance rate 22 

is maximised, and critical minimum (CTmin) and maximum (CTmax) temperatures, at which 23 

performance is zero (Huey & Kingsolver 1989; Angilletta Jr & Angilletta 2009). Typically, the 24 

thermal sensitivity of mosquito life history traits is assessed experimentally, under constant 25 

temperature conditions (Alto & Juliano 2001; Bayoh & Lindsay 2003). In contrast, wild 26 
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 3 

mosquitoes encounter temperature fluctuations as great as 20oC in many normal transmission 27 

settings (Paaijmans et al. 2009).  28 

 29 

Drivers of extreme warming events, such as ENSO and land-use change increase daily 30 

temperature fluctuations even further (Luskin & Potts 2011). Importantly, regional climate and 31 

local weather interact non-linearly to determine the temperatures to which mosquitoes are 32 

exposed (Stenseth et al. 2003). At local scales, vegetation cover modifies solar radiation, air and 33 

soil temperature, rainfall, air humidity and wind, to create a microclimate (Aussenac 2000). In 34 

forests, dense canopies absorb relatively high amounts of solar radiation producing cool, less 35 

variable microclimates (Hardwick et al. 2015; Kovács et al. 2017). Disturbance activities that 36 

reduce canopy cover (e.g. selective logging or forest conversion) profoundly alter microclimates, 37 

increasing mean and maximum temperatures and decreasing humidity (Luskin & Potts 2011; 38 

Meijide et al. 2018). Importantly, the effects of vegetation cover on microclimate are mediated 39 

largely by the general climate (Aussenac 2000) and different land-use types vary in their 40 

buffering capacity against extreme climate events (e.g. ENSO).  41 

 42 

Identifying the effects of microclimate on mosquito population dynamics and pathogen 43 

transmission is important. A growing body of work has found that fluctuating temperatures differ 44 

considerably in their effects on mosquito life-history traits when compared to equivalent constant 45 

mean temperatures (Lambrechts et al. 2011; Carrington et al. 2013a; Carrington et al. 2013b). In 46 

general, fluctuations at lower mean temperatures act to speed up rate processes, whereas the 47 

opposite occurs at high mean temperatures (Paaijmans et al. 2010). As a consequence, models 48 

that use averaged temperatures and fluctuations collected over coarse spatiotemporal scales may 49 

fail to accurately predict the effects on mosquito life-history, and consequently on the dynamics 50 

of mosquito-borne disease transmission. This has been demonstrated for larval development 51 

under laboratory conditions, where large fluctuations around a low mean temperature reduced 52 

development time by approximately five days compared to constant temperature at the same 53 

mean (Carrington et al. 2013a). Given that mosquito population dynamics are determined in part 54 

by the rate at which new adult mosquitoes are produced (Garrett-Jones 1964), and that larval 55 

development time is linked to a suite of adult traits relevant to vectorial capacity (Alto et al. 56 
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2008; Araújo & Gil 2012; Zirbel et al. 2018), understanding how this life-history trait responds 57 

to ecologically realistic temperature fluctuations is critical to effective vector and disease control.  58 

 59 

In a series of experiments conducted across a tropical agro-forest landscape, we investigated the 60 

effects of temperature variation on mosquito life-history. We used local Asian tiger mosquitoes, 61 

Aedes albopictus, a species native to Southeast Asia but that has spread rapidly throughout the 62 

globe, and is a vector for over 22 known arboviruses, including dengue, chikungunya and Zika 63 

viruses. Specifically, we ask: 1) how does the conversion of tropical forest to cropland alter 64 

temperatures to which mosquito larvae are exposed; 2) how does an ENSO drought affect these 65 

temperatures, and 3) how do land-use change and climate interact to affect mosquito larval 66 

development?  67 

 68 

 69 

2. Methods 1 

 2 

Sampling sites 3 

Studies were carried out annually at the Kalabakan Forest Reserve (4°33’N, 117°16’E) in 4 

Malaysian Borneo, between January and April 2016-2018. The site forms part of the Stability of 5 

Altered Forest Ecosystems (SAFE) project, a large-scale deforestation and forest fragmentation 6 

experiment comprising dipterocarp tropical forest and oil palm plantations (Ewers et al. 2011). 7 

Forested sites are grouped into 14 sampling blocks, ranging from undisturbed primary forest to 8 

salvage logged forests, the latter of which are in the process of being converted into a fragmented 9 

agricultural landscape. The salvage logged forest sites have undergone multiple rounds of 10 

selective logging where medium to large commercial timber trees were removed once in the 11 

1970s and one to three times from 1990-2008 (mean aboveground biomass (ABG) of trees with 12 

DBH ≥10 cm across all forest plots = 95.4 ± 72.8 t/ha (± standard deviation, SD; Pfeifer et al. 13 

2016; Riutta et al. 2018). Differences in available timber and topography have resulted in a high 14 

degree of fine-scale spatial variation in logging intensity, and canopy cover ranges from 69.9 to 15 

75% in salvage logged sites (Pfeifer et al. 2015). Average tree height in logged forests is 8.9 m ± 16 

2.31 (SD), and tree density is 336 ± 55 trees ha-1 (Ewers 2018). Oil palm plantations were 17 

established as monocultures in 2006 (Ewers et al. 2011), and have considerably lower biomass 18 
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 5 

than the forest sites (ABG = 38.1 ± 25.2 t/ha (±SD); Pfeifer et al. 2016). The plantations are 19 

characterised by sparse understory vegetation (123 ± 8.32 trees ha-1) and low, open canopies 20 

(average tree height = 1.36 ± 1.26 m, SD; Ewers 2018). Forest and plantation sites are separated 21 

by approximately 15 km, but have been selected to minimise variation in altitude (mean = 460 22 

m; median  = 460 m; interquartile range= 72 m). We randomly selected study sites from 23 

established SAFE project second-order sampling points in an oil palm plantation (OP2) and 24 

salvage logged forest (Fragment B). Sampling points are comprised of three points arranged 178 25 

m apart in a fractal pattern. For further details on the SAFE project sampling design, see Ewers 26 

et al. (2011). Climate in the region is typically aseasonal (Walsh & Newbery 1999) with 27 

occasional droughts that, are less frequent but more severe in Eastern Borneo than in other 28 

regions of the island, and are sometimes but not always associated with the positive phase of 29 

ENSO events (Walsh 1996). However, the 2015-2016 El Niño event was amongst the strongest 30 

in historical records (Null 2016; L’Heureux et al. 2017) and resulted in a severe drought in 31 

Borneo (Meijide et al. 2018). 32 

 33 

Larval development experiments 34 

Mosquito eggs were collected every year from a single logged forest site (4°33’N, 117°16’E) and 35 

stored on paper towels until a sufficient number had been amassed. All eggs were less than two 36 

months old at the time of hatching. Eggs were hatched at the field camp by submerging egg 37 

papers in water for 24 hours, after which any unhatched eggs were discarded. The 1st instar 38 

larvae were distributed in rearing tanks (N = 3 tanks per site with 50 larvae per tank) to sites in 39 

oil palm plantation (N = 9) and in logged forest (N = 9) land-use types. Rearing tanks were 40 

comprised of 330 ml plastic cups (80 mm x 103 mm) covered with mesh cloth, and were placed 41 

in shaded areas at each sampling point. To minimise their risk of being knocked over by wildlife, 42 

tanks were buried ~3 cm into the ground. Rearing tanks were visited every 1-2 days and larvae 43 

were provisioned with approximately five Tetra Cichlid Colour™ fish pellets every two days. 44 

Pupae were removed and hatched at the field camp, and the number of development days (taken 45 

as days from egg hatching to emergence) and the sex of emerging adults were recorded. 46 

Experiments were repeated once per year between 2016 and 2018.   47 

 48 

Temperature data 49 
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Air temperature was recorded every 30 minutes for the duration of each experiment, using a Data 50 

Logger EL-USB-2 (LASCAR electronics, Salisbury). Loggers were secured to small wooden 51 

stakes at a height of 5 cm, and placed with the rearing tanks at each sampling point. The loggers 52 

were shaded from direct sunlight and rain with plastic plates suspended approximately 30 cm 53 

above each post.   54 

 55 

3. Analysis 1 

 2 

Land-use mediated temperature 3 

 4 

Temperature data were filtered to remove outliers due to instrument failure. Outliers were 5 

identified as points falling outside 1.5x the interquartile range of daily temperatures for each site 6 

(See supplementary material (S1) for summary of outliers). All analyses were carried out in R 7 

Version 3.5 (R Core Team 2014, http://www.R-project.org). Generalised linear models with 8 

Gaussian errors (package ‘lme4’; link = log; Bates et al. 2012) were used to investigate the 9 

effects of land-use type and ENSO drought event on mean temperature and daily temperature 10 

range, and Gamma errors were used for minimum and maximum temperature. Both land-use 11 

type and ENSO drought were treated as categorical variables. Models selection was carried out 12 

using stepwise selection and Chi-squared statistic. Post-hoc significance tests using the glht 13 

function (package = ‘multcomp’; Hothorn et al. 2008) were used to compare treatment effects 14 

and their interactions. 15 

 16 

Probability of mosquito emergence 17 

 18 

Mean mosquito development times were compared between the different land-use types for an 19 

ENSO and non-ENSO years using Wilcoxon-Mann-Whitney tests. To investigate the effects of 20 

temperature and land-use type on mosquito larvae development, time-to-event models (Cox 21 

proportional hazards; package ‘survival’; Terry 2012) were used. Proportional hazards models 22 

are a semi-parametric regression method that analyse the effect of explanatory variables on a 23 

hazard rate, defined as the instantaneous risk of an event occurring, given that it has not occurred 24 

up until that time. Here, event was defined as day of adult mosquito emergence, taken as the 25 
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number of days from hatching of eggs. For this study, higher hazard rates thus denote earlier 26 

mosquito emergence times.  27 

 28 

Due to high correlation between ENSO and the temperature variables, we retained ENSO alone 29 

in the model along with the uncorrelated land-use type, and mosquito sex. Model selection was 30 

achieved using Akaike Information Criterion (AIC) and Chi-squared tests were used to ensure 31 

that hazard functions were proportional over time for each treatment.  32 

 33 

4. Results 1 

 2 

Effect of ENSO drought and land-use type on temperature 3 

 4 

Land-use type and ENSO drought both significantly affected the temperature to which mosquito 5 

larvae were exposed (Fig 1). In non-ENSO periods, average daily temperatures in logged forest 6 

and oil palm plantation sites did not differ significantly (GLM, F = 12.37, p = 0.57; Fig 2A). 7 

While the average daily temperature did not differ during this period, the daily temperature 8 

ranges at oil palm sites were greater (Fig 2A) due to higher temperature fluctuations (GLM, F = 9 

13.17, p = 0.003; Fig 1). Maximum temperatures were higher in oil palm plantation than in 10 

logged forest sites during the ENSO period (GLM, F = 6.41, p = 0.02), however minimum 11 

temperatures did not differ significantly between land-use types (GLM, F = 1.11, p  = 0.38) in 12 

either period.   13 

 14 

During the ENSO drought, average daily temperatures increased significantly across all land-use 15 

types (GLM, F = 59.36, p < 0.001). However, temperatures in oil palm plantations were higher 16 

and increased by more than twice as much than in logged forest, resulting in a higher average 17 

daily temperature (Fig 2A). Again, daily temperature range was significantly greater in oil palm 18 

plantations than in logged forests (GLM, F = 13.17, p = 0.003). Average maximum temperatures 19 

were significantly greater in oil palm plantation than in logged forest, with oil palm plantations 20 

experiencing peak temperatures of 7oC warmer on average than in logged forest (GLM, F = 5.73, 21 

p = 0.03). Daily minimum temperatures did not differ by land-use type during the ENSO drought 22 

(GLM, F = 0.83, p = 0.38). In both land-use types, average maximum temperatures were 23 
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significantly greater during the ENSO drought than during non-drought periods (GLM, F = 24 

44.81, p < 0.001).  25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

Effect of temperature on development time of Aedes albopictus mosquito larvae 40 

 41 

Mosquito larval development was significantly affected by local temperature and by ENSO (Fig 42 

2B; Table 1). During non-drought periods, the duration of larval development was longer in 43 

logged forests (Mann-Whitney U, W = 119450, p < 0.001). In logged forests development was 44 

16.8 ±0.29 (SE) days for females and 14.2 ±0.25 (SE) days for males, while in oil palm average 45 

development was 14.6 ±0.25 (SE) days for females and 11.4 ±0.22 (SE) days for males. The 46 

regional climatic shift associated with the ENSO drought decreased the average emergence time 47 

for mosquitoes reared in both land use types. During the ENSO drought there was no difference 48 

in the development time of larvae reared in different land use types (Mann-Whitney U, W = 49 

7282, p  = 0.15). In logged forests females took 10.9 ± 0.21 (SE) days to emerge and males took 50 

Figure 1. Daily diurnal temperature cycles across the two land-use types. Mean hourly temperature in logged 
forest (grey line) and oil palm plantations (black line) during a non-ENSO and ENSO period. Shaded areas denote 
standard errors. 
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 9 

9.29 ± 0.20 (SE) days. In oil palm plantations females took 10.3 ± 0.25 (SE) days and males took 51 

9.09 ± 0.25 (SE) days to emerge.  52 

 53 

Results of the Cox proportional hazards model supported the interacting effects of land-use type 54 

and ENSO drought on mosquito emergence times (Table 1). Mosquito larvae developing during 55 

an ENSO drought, that survive to adulthood, experienced a 7-fold increase in the hazard rate, 56 

leading to earlier emergence times compared to those in a non-drought period (Cox Regression, z 57 

= 16.42, p < 0.001). Developing in an oil palm plantation also significantly increased the hazard 58 

rate of mosquito emergence, with mosquitoes 1.99 ±0.08 times more likely to emerge per day 59 

than in logged forest (HR = 1.99; Cox Regression, z = 8.79, p < 0.001). Emergence times were 60 

also strongly influenced by sex, with male mosquitoes emerging earlier with a daily emergence 61 

probability of 2.0 ± 0.07 times that of females (Cox Regression, z = 10.42, p < 0.001). There was 62 

also a significant interaction between ENSO drought and land-use, such that the daily probability 63 

of emergence of mosquitoes in oil palm plantations was 0.6 ±0.15 times less during the drought 64 

(Cox Regression, z = -3.85, p = 0.0001).  65 

 66 

 67 

Factors 
 
β e(β) se(β) z p 

ENSO 1.96 7.08 0.12 16.42 <0.001** 

Land-use type (Oil palm)  0.69 1.99 0.08 8.79 <0.001** 

Sex (Male) 0.71 2.02 0.07 10.42 <0.001** 

ENSO * Land-use type 

(Oil palm) -0.59 0.55 0.15 -3.85 0.0001** 

Table 1. Coefficients of Cox proportional hazards survival analysis estimating effects of ENSO, sex and land-68 
use type on the timing of adult mosquito emergence. Regression coefficients and hazard ratios (exponentiated 69 
coefficients) are shown. Positive coefficients imply higher risk; negative coefficients imply the opposite. P values 70 
indicate the significance of the coefficients using a Wald z statistic.   71 

72 
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73 1 

 

A 

B 

C 

Figure 2. Summary of land-use effects on microclimate and on mosquito larval development. (A) Mean 
temperatures in logged forest and oil palm plantations; (B) Mean development time of Ae. albopictus larvae (measured 
as number of days from eggs hatching to adults emerging), vertical boxplot lines represent values within 1.5x the 
interquartile range of the upper and lower quartiles, horizontal boxplot lines indicate the quartile values, large points 
denote means for logged forest (grey circles) and oil palm (black diamonds), small points are outliers; (C) Conceptual 
thermal performance curve demonstrating how temperature fluctuations in logged forest (grey circles) and oil palm 
plantations (black diamonds) may affect larval development rate (CTmin = critical minimum, CTmax = critical maximum 
and Topt = thermal optimum).  
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5. Discussion 2 

 3 

5.1 Logged forests buffer the effects of ENSO drought on local temperature conditions  4 

 5 

The results of this study indicate that oil palm plantations experience more severe changes in 6 

local temperature than logged forests during an ENSO drought event. The greater buffering 7 

capacity of logged forests has been identified in a number of other studies (Frey et al. 2016; 8 

Meijide et al. 2018), and is related to greater canopy closure (Renaud et al. 2011) and higher leaf 9 

area index (Hardwick et al. 2015). However, in contrast with a previous study, mean daily 10 

temperature in the logged forest and oil palm plantation sites did not differ significantly in non-11 

drought years (Meijide et al. 2018). Where average midday temperatures are compared, the 12 

differences in mean temperature between forest and oil palm can be even larger (Luskin & Potts 13 

2011; Sabajo et al. 2017). The similarity in temperature observed in this study is likely due to the 14 

maturity of the oil palm plantations sampled, as older plantations have more closed canopies and 15 

more complex understory vegetation structure (Luskin & Potts 2011), and to the history of 16 

selective logging which has reduced canopy cover in the forest sites (Ewers et al. 2011).  17 

  18 

5.2 Land-use and ENSO synergistically affect mosquito development  19 

 20 

The effects of land-use type on mosquito emergence times are surprising, given the difference in 21 

their temperatures. In normal years, logged forests and oil palm plantations did not differ 22 

significantly in mean temperature, however mosquitoes had considerably higher hazard rates in 23 

oil palm plantations compared to logged forest. During an ENSO drought, when mean 24 

temperatures and daily temperature ranges did differ significantly, mosquito hazard rates were 25 

almost identical between the sites. It is worth reiterating that for this study, the hazard rate refers 26 

only to adult emergence times and not to mosquito survival. It is possible that other microclimate 27 

factors may influence mosquito larval development. For example, relative humidity is expected 28 

to be greater in logged forest than in oil palm (Hardwick et al. 2015), which could decrease the 29 

surface tension of water in the experimental pots (Pérez-Díaz et al. 2012) and thereby impact 30 

mosquito pupation success (Murdock et al. 2017).  31 

 32 
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An alternative explanation for the absence of a land-use effect on development during the ENSO 33 

drought is that the elevated temperatures in the oil palm plantation were high enough to cause 34 

stress and reduce the fitness of developing mosquitoes (Feder & Hofmann 1999).  Thermal 35 

performance curves, which describe the effects of changes in body temperature on physiological 36 

sensitivity and fitness, are non-linear, such that mean performance of a life-history trait under 37 

fluctuating conditions may differ to the performance of that life-history trait under mean 38 

temperature (Fig 2C; Martin & Huey 2008). Fluctuations that raise temperatures towards a 39 

mosquito’s optimum temperature are expected to increase performance relative to constant 40 

temperature around the same mean. However, fluctuations that push temperatures beyond the 41 

thermal optimum may result in a decline in performance (Huey & Stevenson 1979). As the slope 42 

of the performance curve is steeper above the thermal optimum, increases in body temperature 43 

beyond this are associated with a relatively rapid reduction in fitness (Angilletta Jr & Angilletta 44 

2009).  45 

 46 

This would explain the homogeneity of mosquito emergence rates during the ENSO drought 47 

despite temperatures differing significantly between the land-use types. Under drought 48 

conditions, mosquitoes in both logged forest and oil palm sites would have experienced 49 

temperatures closer to their thermal optimum, resulting in the observed faster development rates 50 

compared to normal years. However, temperature fluctuations in oil palm were 5°C greater than 51 

in logged forest, potentially exposing mosquito larvae to deleterious temperatures for long 52 

enough to reduce growth rates (Fig 2C). The temperature fluctuations could also explain the 53 

difference in larval development in non-ENSO years, when mean temperatures are similar in the 54 

land-use types, but greater daily temperature fluctuations in oil palm plantations result in faster 55 

larval development times. It is worth reiterating here that our study included only one ENSO 56 

event, and that the response of mosquito larvae may vary with the strength and frequency of 57 

different drought events. Additionally, whilst we controlled for larval habitat in this study, these 58 

sites may vary considerably under natural conditions in the two land-use types; other factors may 59 

then be more dominant drivers of larval development rates.   60 

 61 

A considerable body of work has been dedicated to elucidating the effects of temperature on the 62 

life-histories of mosquitoes (Parker 1952; Lyimo et al. 1992; Alto & Juliano 2001; Delatte et al. 63 
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2009; Paaijmans et al. 2011; Couret et al. 2014), however key knowledge gaps remain in our 64 

understanding of the thermal environment experienced by these small-bodied ectotherms under 65 

natural conditions. This study identifies synergistic effects of land-use and climate on the 66 

development rates of mosquitoes, highlighting the need to characterise environmental conditions 67 

at finer scales than is typically done (e.g. using regional weather stations) to fully understand 68 

how environmental change may drive mosquito population dynamics. Importantly, because 69 

vectorial capacity is a composite measure of multiple life-history parameters, each with 70 

potentially different thermal sensitivities, the effect of temperature on disease transmission will 71 

be integrated across these parameters (Martin & Huey 2008). For example, mosquito larval 72 

development rate is negatively correlated with adult body size (Mohammed & Chadee 2011), 73 

which in turn can have downstream effects on adult survival and feeding behaviour (Nasci & 74 

Mitchell 1994; Farjana & Nobuko 2013). Thus, although mosquitoes developing during the 75 

ENSO drought emerged earlier than those in a non-ENSO year, they are likely to be smaller, 76 

have reduced adult survival (Nasci 1986), and therefore fewer opportunities for host contact over 77 

a lifetime. However, due to their limited teneral reserves smaller mosquitoes may take more 78 

frequent bloodmeals (Takken et al. 1998), which would increase host contacts (Farjana & 79 

Nobuko 2013). Importantly, microclimate is one of a many linked predictors of land-use change. 80 

Understanding how key environmental drivers (e.g. temperature) mediate these trade-offs in 81 

transmission ecology will be critical to prediction of disease transmission and effective disease 82 

control.  83 
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