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Abstract 

The effect of sexual selection on species persistence is unclear. The cost of bearing ornaments or 

armaments might increase extinction risk, but sexual selection can also enhance the spread of 

beneficial alleles and increase the removal of deleterious alleles, potentially reducing extinction risk.  35 

Here we investigate the effect of sexual selection on species persistence in a community of thirty-

four species of dung beetles across a gradient of environmental disturbance ranging from old-

growth forest to oil palm plantation. Horns are sexually selected traits used in contests between 

males, and we find that both horn presence and relative size are strongly positively associated with 

species persistence and abundance in altered habitats. Testes mass, an indicator of post-copulatory 40 

selection, is, however, negatively linked with the abundance of species within the most disturbed 

habitats. This study represents the first evidence from a field system of a population-level benefit 

from pre-copulatory sexual selection. 

  



 

Introduction 45 

Sexual selection is ubiquitous across the animal kingdom, driving the evolution of traits which give 

advantages in competition for matings and fertilisations (Darwin 1871; Andersson 1994). Such traits 

are typically costly to produce and maintain, and are often honest indicators of an individual’s 

condition, with their degree of expression reflecting underlying genetic quality via the ‘genic 

capture’ mechanism in many cases (Rowe & Houle 1996; Tomkins et al. 2004; Cotton & 50 

Pomiankowski 2007). By skewing individuals’ reproductive success,  sexual selection has the capacity 

to have profound effects on the fitness and viability of populations (Holland & Rice 1999; Lumley et 

al. 2015), particularly when a population faces stressful environmental change (Fricke & Arnqvist 

2007; Long et al. 2012), but the picture is a complex one with both negative and positive effects of 

sexual selection potentially operating at the population level (Candolin & Heuschele 2008; Holman & 55 

Kokko 2013). 

Of the potential negative effects, the straightforward costs to individuals arising from the effects of 

strong sexual selection are numerous. Sexual ornaments and weapons are costly to grow and to 

carry (Bobek et al. 1990; Rico-Guevara & Hurme 2018), sexual display and contests with rivals can be 

exceedingly expensive energetically (Hunt et al. 2004) and bring a risk of injury, and the increased 60 

conspicuousness of sexual display traits and need for movement to find potential mates can increase 

the risk of predation (Godin & McDonough 2003; Kuchta & Svensson 2014). Additionally, sexual 

selection reduces effective population sizes (Kokko & Brooks 2003) and may erode genetic variation 

Dugand et al. 2019, but see also Radwan et al. 2016). Models incorporating this additional selection 

load imposed by sexual selection find that  the probability of extinction can be increased (Lande 65 

1980; Tanaka 1996; Kokko & Brooks 2003) under certain circumstances (Martínez-Ruiz & Knell 2017).  

Further to these costs of sexual selection, there are potential negative impacts at the population 

level arising from the effects of sexual conflict (Arnqvist & Rowe 2005): if traits which are beneficial 

to the fitness of one sex act antagonistically in the other sex, causing reduced fitness, then this can 
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reduce adaptation rates (Holland 2002; Rundle et al. 2006; Chenoweth et al. 2015), impede the 70 

removal of deleterious alleles (Arbuthnott & Rundle 2012) and reduce the net reproductive rate of 

the population (Holland & Rice 1999). A study of sex ratios and male harassment in common lizards 

Lacerta vivipara, (Le Galliard et al. 2005) suggested that sexual conflict could even cause extinction 

via a positive feedback loop whereby male harassment causes mortality of females, leading to a 

male-biased sex ratio which then causes stronger selection for aggressive males, causing further 75 

female mortality and ultimately driving the population to extinction. Modelling (Rankin et al. 2011) 

suggests that this scenario is indeed plausible. 

By contrast, a body of other research suggests that sexual selection could have beneficial effects at 

the population level. Theory indicates that when there is strong reproductive skew sexual selection 

can increase adaptation rates to novel environments: if the skew is in favour of ‘high quality’ 80 

individuals this enhances the spread of adaptive alleles throughout a population (Lorch et al. 2003; 

Martínez-Ruiz & Knell 2017). Consistent with this theory, laboratory studies using invertebrate 

model organisms in experimental evolution designs have found that sexual selection enhances 

adaptation and protects against extinction (Fricke & Arnqvist 2007; Long et al. 2012; Plesnar-Bielak 

et al. 2012; Jacomb et al. 2016; Parrett & Knell 2018; Yun et al. 2018). Similarly, sexual selection has 85 

also been found to enhance the removal of deleterious alleles and to reduce the probability of 

extinction from inbreeding depression (Jarzebowska & Radwan 2010; Lumley et al. 2015). A recent 

meta-analysis of 65 laboratory experimental evolution studies found that overall there is a 

significant positive effect on traits associated with population fitness when sexual selection is strong, 

especially when under environmental stress (Cally et al. 2019).  90 

Taken as a whole, therefore, laboratory experiments suggest that at the population level the overall 

effect of sexual selection is likely to be positive (Cally et al. 2019), although this will depend on the 

specific system, the environmental conditions (Yun et al. 2018),  and the nature of genetic variation 

within a population (Dugand et al. 2019). Field studies, however, using comparative techniques and 
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largely focussed on vertebrates, suggest that sexual selection either increases extinction risk (McLain 95 

et al. 1995; McLain & Vives 1998; Sorci et al. 1998; Doherty et al. 2003; Morrow & Pitcher 2003; Bro-

Jørgensen 2014; Martins et al. 2018) or has no effect on population level fitness (Prinzing et al. 2002; 

Morrow & Fricke 2004). As an example, multiple studies have found that artificially introduced 

populations of sexually dichromatic bird species are less likely to become established on islands 

when compared to sexually monochromatic species (McLain et al. 1995, 1999; Sorci et al. 1998) but 100 

see also (Donze et al. 2004; Moulton et al. 2009). Taking a different approach, Martins et al. (2018) 

recently found that over geological timescales prehistoric ostracod species with a high intensity of 

sexual selection, as predicted from sexual dimorphism in both size and shape, were more likely to 

become extinct compared to species with relatively weak sexual selection.  

There is, therefore, a mismatch between the findings of laboratory studies of invertebrate 105 

populations, and field studies which tend to focus on communities of vertebrates, often with small 

population sizes which could lead to an overriding effect of demographic stochasticity (Martínez-

Ruiz & Knell 2017). In order to attempt to resolve this, we examined the effect of sexual selection on 

the persistence of tunneller dung beetle (Scarabaeidae: Scarabaeinae) populations after the 

alteration and modification of tropical rainforest in Sabah, Malaysian Borneo. Beetles were sampled 110 

across a replicated gradient of habitat disturbance ranging from old growth forest (OGF) through 

selectively-logged (SLF) and heavily-logged forest (HLF) to oil palm plantation (OPP) (Ewers et al. 

2011). Thirty-four species of tunneller dung beetle were found in the OGF, and the persistence and 

abundance of each of these was followed across the gradient of environmental alteration; thus we 

restricted the analysis to the tunneller species that were present in the undisturbed environment. 115 

The intensity of sexual selection in each species was estimated using surrogates of pre-copulatory 

sexual selection: whether a species is horned or hornless, and relative size of horns. Relative testes 

mass was also recorded as a measure of post-copulatory sexual selection. Measures such as these 

are used widely to estimate the intensity of sexual selection between species (Andersson 1994; 

Hosken 1997; Byrne et al. 2002; Morrow & Pitcher 2003; Morrow & Fricke 2004; Bro-Jørgensen 120 
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2007, 2014; Simmons et al. 2007). We find that horn presence, and within horned species horn 

length, both predict species persistence and abundance across the disturbance gradient, and we find 

evidence linking higher testes mass to reduced abundances. 
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Methods 125 

Study sites were located within the Stability of Altered Forest Ecosystems (SAFE) project site (4°33’N, 

117°16’E) and the Maliau Basin Conservation Area (4°49’N, 116°54’ E) in Sabah, Malaysian Borneo. 

The SAFE project is a large scale experiment investigating the effects of rainforest modification and 

fragmentation, consisting of a mixture of selectively logged and heavily logged lowland dipterocarp 

rainforest, and oil palm plantations which were planted between 2000 and 2006 (Ewers et al. 2011). 130 

The SAFE project has been specifically designed to address the large-scale effects of forest 

fragmentation and disturbance in a well replicated design that controls for environmental variation 

(see Ewers et al. 2011 for further details). Sampling of dung beetles was carried out across a gradient 

of forest modification: old growth forest (OGF) in Maliau Basin, and within SAFE, in twice selectively 

logged continuous forest (SLF), twice heavily logged forest (HLF), and oil palm plantation (OPP). The 135 

experimental fragmentation described by Ewers et al. (2011) had not yet taken place and so these 

‘fragments’ are classified as heavily logged forest (HLF) within this study. For details in the 

differences in intensity of logging and forest cover between sites see Ewers et al. (2011) and for 

details of a number of abiotic factors see Hardwick et al. (2015). Dung beetle sampling was 

performed between January and February in 2011 (Slade et al. 2019)  to estimate abundance and 140 

species richness across the disturbance gradient, and to collect data on horn presence and relative 

lengths across the community. Between July and August in 2015 sampling was carried in the same 

sites to collect data on testes mass and increase sample sizes for relative horn lengths across the 

community. 

In total, data from 108 traps from 2011 were used to determine species richness and abundance 145 

data across the landscape. Each habitat type (OGF, SLF, HLF, OPP) had three replicates, with nine 

sampling points (second order points in the sampling design explained in Ewers et al., 2011) per 

replicate. Spatial scaling differed in HLF (Ewers et al. 2011) and nine second order points from three 

replicates (Fragments B, D and E in Ewers et al. 2011) were randomly selected. In 2015 the traps 
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were set at the same locations except only 3 traps were set per replicate in SLF due to logistical 150 

reasons as beetles used for testes dissections needed to be live trapped and collected within 24 

hours. 

In both 2011 and 2015 sampling was carried out using pitfall traps baited with 25g of human dung 

protected from rain with a cover. Human dung is widely used as standardised bait in tropical forests 

(Marsh et al. 2013) and attracts a wide variety of dung beetle species (Davis et al. 2001; Larsen et al. 155 

2006). Trapping methods differed slightly between years; in 2011 pitfall traps were half filled with a 

solution of water, salt and detergent which kills beetles as they break the water surface tension and 

cannot escape, and traps were left for 48hrs before being collected. In 2015, as we were collecting 

beetles primarily for testes measurements, live pitfall trapping was used. A plastic funnel minimized 

beetle escapes and traps were collected after 24hrs. 160 

Specimens from 2011 were stored in 90% ethanol and identified to species level using Boucomont 

(1914) and Balthasar (1963) and publications describing Bornean Scarabaeinae (e.g. Ochi 1996), and 

the reference collections at the Oxford University Museum of Natural History (OUMNH). Species that 

could not be identified were given morphospecies numbers. Specimens from 2015 were identified in 

the field. 165 

Our study set out to test the persistence of species after the modification of forest habitat. Until 

relatively recently primary old growth forest would have dominated the majority of the landscape 

investigated in this study. To test for population persistence after the modification of habitat in the 

disturbed sites, we therefore only include species that were found in OGF in our analysis and track 

their persistence and abundance across the disturbance gradient. Additionally, dung beetles can be 170 

separated into ecological guilds based on their method of dung removal and nesting behaviour 

(Slade et al. 2007). Sexual selection is believed to operate differently within these guilds and the 

expression of horns is strongly associated with tunnelling, rather than ball-rolling behaviour (Emlen 

& Philips 2006). Since the presence and size of horns was the main proxy for precopulatory sexual 

https://paperpile.com/c/1EM8fr/KKrPN
https://paperpile.com/c/1EM8fr/KKrPN
https://paperpile.com/c/1EM8fr/KKrPN
https://paperpile.com/c/1EM8fr/bxfdm+MRzaB
https://paperpile.com/c/1EM8fr/bxfdm+MRzaB
https://paperpile.com/c/1EM8fr/bxfdm+MRzaB
https://paperpile.com/c/1EM8fr/bxfdm+MRzaB
https://paperpile.com/c/1EM8fr/bxfdm+MRzaB
https://paperpile.com/c/1EM8fr/bxfdm+MRzaB
https://paperpile.com/c/1EM8fr/DxzQe+n2qE6
https://paperpile.com/c/1EM8fr/DxzQe+n2qE6
https://paperpile.com/c/1EM8fr/j8ScM
https://paperpile.com/c/1EM8fr/lM3Oy
https://paperpile.com/c/1EM8fr/lM3Oy
https://paperpile.com/c/1EM8fr/lM3Oy
https://paperpile.com/c/1EM8fr/aPYwZ
https://paperpile.com/c/1EM8fr/aPYwZ


 

selection used here only tunneller species were included in the analysis. In total 34 tunneller species 175 

were included in the final dataset (supporting information Table S4). When available, average body 

size, composite horn length, body mass, and testes mass were calculated for each species (see 

supporting information for details). For a number of species we were unable to calculate 

morphology data due to males not being trapped and these species were therefore excluded from 

trait specific analysis.  180 

Statistical analysis was carried out by fitting a series of models to species richness of horned and 

hornless species across the disturbance gradient. A further series of models were fitted to the 

abundance of species across the disturbance gradient with each sexually selected trait as an 

explanatory variable (species being horned or hornless, relative horn length and relative testes 

mass). From each series of models, model comparison was made by comparing corrected Akaike 185 

information criteria (∆AICc) and we report all with non-negligible support (∆AICc<10; for further 

details of statistical analysis see supporting information). 

 

  



 

Results 190 

Of the series of statistical models fitted to assess how the species richness of horned and hornless 

species changed across the disturbance gradient, two had non-negligible support (ΔAICc<10; 

supporting information Table S1). Both of these included the interaction term between habitat type 

and whether species were horned or hornless, indicating that the effect of disturbance on the 

number of species persisting depends on whether the species in question were horned or hornless 195 

(Fig. 1). The majority of the horned species found in OGF persisted in SLF but the species richness of 

hornless species declined markedly. Both horned and hornless species were substantially reduced in 

HLF when compared to OGF. Strikingly, no hornless species were found to persist into OPP, whereas 

11 of the 22 horned species found in OGF persisted across the disturbance gradient into OPP. 

A similar pattern emerged when the abundance of horned and hornless species was analysed across 200 

the disturbance gradient. Once again, two of the models which were fitted had non-negligible 

support (ΔAICc<10), and both included the interaction term between habitat type and whether a 

species was horned or hornless (supporting information Table S2). The interaction term appears to 

be largely driven by hornless species having reduced abundance in SLF, in contrast to horned species 

which tend to maintain similar abundance to OGF (Fig. 1). A similar but weaker pattern is also 205 

observed within HLF in which the abundances of both horned and hornless species are reduced. In 

OPP, hornless species are no longer found, and although the abundance of many horned species is 

reduced compared to OGF, a number of them maintain high abundances. Qualitatively similar 

patterns in species abundance were observed when taking phylogenetic relatedness into account by 

fitting phylogenetic generalised linear mixed effects models (PGLMM; see supporting information for 210 

details of molecular phylogeny). The model with the lowest AIC score included the interaction term 

between habitat type and whether species were horned or hornless, however AIC differed by only 

3.4 between the models fitted with and without the interaction (supporting information Table S3), 

indicating that a component of the effect of horn presence could be attributed to closer 



 

phylogenetic relationships between some species. Nonetheless, there is strong support overall for 215 

the result that horned species tend to maintain higher abundances after the alteration of OGF 

compared to hornless species. 

As is typical for dung beetles (Emlen et al. 2005), there is considerable variation between horned 

species in the degree of investment in horns, and this variability in relative horn size is likely to be 

associated with differences in the intensity of male-male competition between species (Simmons & 220 

Tomkins 1996; Bro-Jørgensen 2007). We therefore assessed the relationship between relative horn 

size and abundance of horned species. Three models had non-negligible support (ΔAICc<10) and all 

of these included the interaction term between relative horn size and habitat type (supporting 

information Table S2). Overall, these models show an association between species abundance and 

habitat disturbance, with reduced abundance within increasingly disturbed habitats. Species with 225 

relatively large horns, however, tended to either maintain or have increased abundances compared 

to baseline abundances (OGF) across the disturbance gradient, whereas those species with relatively 

low investment in horns tended to show reduced abundance, with this effect being greatest within 

the most disturbed sites (HLF and OPP; Fig. 2). PGLMMs showed a similar positive association 

between relative investment in horns and abundance after habitat disturbance; in this case the 230 

difference between AIC scores between models fitted with and without the interaction term 

between habitat type and relative investment in horns was >10 (supporting information Table S3). 

The model coefficients indicate that species with relatively large horns maintain similar abundances 

to OGF within SLF and HLF, compared to species with relatively little investment in horns which tend 

to have reduced abundances after the habitat is modified. Overall, there is strong support for an 235 

effect of relative horn length influencing species abundance across the disturbance gradient. 

Moreover, those species with relatively large horns tend to persist at high abundances compared to 

those with little investment in horns. 
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Sexual selection can also occur post-copulation and relative testes size is known to correlate strongly 

with the intensity of sperm competition a species experiences (Hosken 1997; Byrne et al. 2002; 240 

Simmons et al. 2007). We used relative testes mass as an estimate of the intensity of post-

copulatory sexual selection. From the series of models fitted six had non-negligible support 

(ΔAICc<10), and of these the three with the lowest ΔAICc scores included the interaction term 

between testes mass and habitat type (supporting information Table S2). These models suggest that 

species with relatively large testes have reduced abundance in HLF and OPP compared to species 245 

with relatively small testes, with no effect of testes mass on species abundance in OGF and SLF, 

although this effect is hard to visualise (Fig. 3).  The remaining three models with non-negligible 

support, however, do not show this same relationship: one retains the main effects of habitat and 

testes mass and the remaining two just the main effect of habitat, indicating that the degree of 

support for an effect of relative testes mass on species abundance across the disturbance gradient is 250 

less than the support for effects of horn presence and relative horn length (see above). The PGLMM 

containing the interaction term between relative testes mass and habitat type was the best fitting 

and the difference in AIC scores was 4.9 between the models with and without the interaction term 

included (supporting information Table S3). The model estimates indicate similar effects as non-

phylogenetic models: species with relatively large testes have reduced abundance in HLF and OPP 255 

compared to their abundances in SLF, however, in the least disturbed habitats (OGF & SLF) there was 

no effect of testes mass on species abundance. Together these results indicate some support for a 

negative effect of relative testes mass on species persistence within the most disturbed habitats. 
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Discussion 260 

As the intensity of disturbance increases species associated with old growth forest (OGF) are 

progressively lost, with those remaining tending to have reduced abundances. Such patterns have 

been observed in dung beetle communities before (Slade et al. 2011; Braga et al. 2013; Gray et al. 

2014; França et al. 2017) and are likely to be a common pattern across a wide variety of taxa (Sodhi 

et al. 2004; Gardner et al. 2009; Bicknell et al. 2014; Thorn et al. 2018). Here we find evidence that 265 

this loss of species with disturbance is reduced in horned species. Furthermore, within the horned 

species there is an effect of relative horn size, whereby a high degree of investment in horns is 

associated with larger population sizes and improved persistence after habitat modification. We also 

find a negative relationship between relative testes mass and abundance, although only in the two 

most disturbed habitats. 270 

Our findings that species possessing horns and, if horned, those species with relatively large horns 

have increased persistence across the disturbance gradient are largely consistent with theoretical 

predictions (Lorch et al. 2003; Martínez-Ruiz & Knell 2017) and the majority of laboratory studies 

(Cally et al. 2019) which suggest that sexual selection acts to purge populations of deleterious alleles 

and drive adaptive evolution. On the basis of this theory, we can propose a mechanism for this 275 

pattern. Expression and exaggeration of horns is known to be condition dependent in dung beetles 

(Emlen 1994; Knell & Simmons 2010), and so those males with the largest horns are likely, on 

average, to be better adapted to the environment or to be carrying a lower mutational load than 

others. In those species that express horns, intrasexual competition is likely to be more intense 

compared to hornless species, and in those species with a relatively high investment in horns it is 280 

likely to be more intense compared to those with a relatively low investment in horns. This increased 

intensity of competition is likely to lead to well-adapted males or those with low mutational loads, as 

signalled by their large horns, being able to monopolise mating opportunities (Hunt & Simmons 

2001; Karino et al. 2005; Pomfret & Knell 2006). Sexual selection therefore could be skewing 
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reproductive success in favour of ‘high quality’ individuals, providing population-level benefits of 285 

competition between males and increasing the likelihood that species under strong pre-copulatory 

sexual selection are more likely to persist after environmental change. 

The population-level benefits of male-male competition found here contrast with the finding that 

relative horn length in bovids is positively associated with extinction risk (Bro-Jørgensen 2014), and 

these data are also apparently at odds with a number of previous field studies, which found sexual 290 

selection to increase the probability of extinction in novel environments (McLain et al. 1995, 1999; 

Sorci et al. 1998). A number of possible explanations exist for this discrepancy. For example, before 

habitat alteration, the populations in the current study would probably have been at or near their 

natural carrying capacities, whereas many previous studies focussed on the persistence of small or 

very small populations of introduced birds (McLain et al. 1995, 1999; Sorci et al. 1998). It has been 295 

suggested that strong sexual selection could make small populations such as the ones addressed in 

these studies of birds particularly prone to extinction due to increased demographic stochasticity, 

whereas large populations would benefit from strong sexual selection  (Martínez-Ruiz & Knell 2017), 

which is consistent with the current study. Furthermore, generation time can influence the adaptive 

capacity of populations (Chevin et al. 2010). Although little is known about generation times for the 300 

animals studied here, dung beetles typically have short development times (Simmons & Kotiaho 

2002), and therefore increased potential to adapt compared to those previous studies on species 

with relatively long generation times such as birds and mammals (McLain et al. 1995, 1999; Sorci et 

al. 1998; Doherty et al. 2003) — it is possible that this increased adaptive capacity could interact 

with the strength of sexual selection to enhance population persistence. 305 

The patterns we describe could, alternatively, arise if horned species are able to outcompete 

hornless species, and if species with relatively large horns outcompete those with relatively small 

horns for resources within habitats which are structurally less complex (i.e. disturbed habitats). 

Indeed, within the mite, Rhizoglyphus echinopus, aggressive male morphs have been shown to 
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outcompete benign male morphs in less complex habitats (Tomkins et al 2011). Although we cannot 310 

explicitly reject this idea it seems unlikely in this case for several reasons. Firstly, in dung beetles the 

majority of interspecific resource competition will occur between females, which rarely express 

horns. Secondly we are unaware of any literature indicating that horns (male or female) in dung 

beetles are used in interspecific competition, and thirdly, although the ecological complexity is, 

overall, greater in the least disturbed sites, the actual space in which resource competition will be 315 

occurring (i.e. a dung pile or tunnel) is likely to remain similar between habitats. 

In contrast to the positive effects of pre-copulatory sexual selection, we found a negative effect of 

relative testes mass on species abundance within the most disturbed habitat types. Like horns, 

testes mass can be condition-dependent in dung beetles (Knell & Simmons 2010; Almbro & Simmons 

2014) and this is likely to be the case within the species studied here. Male animals are known to 320 

trade-off investment in traits associated with pre-copulatory success against traits associated with 

post-copulatory success (Simmons et al. 2017), so this pattern could potentially arise if horn size 

and/or presence is negatively correlated with testes mass. In other tunnelling dung beetles the 

evolution of longer horns has been found not to be associated with reductions in testes mass 

(Simmons & Fitzpatrick 2016). Additionally, in our dataset mean testes mass did not differ between 325 

horned and hornless species, and within the horned species there is no evidence for a relationship 

between horn length and testes mass (see supporting information). This indicates that the observed 

negative relationship between testes mass and abundance is not likely to simply be an artefact of 

the relationship between investment in horns and testes.  

This negative relationship is, however, consistent with the findings that increased sperm competition 330 

and polyandry, predicted from testes size in birds (Morrow & Pitcher 2003) and sexual dimorphism 

in ostracods (Martins et al. 2018), are positively associated with extinction risk and extinction, 

respectively. In line with previous work, this finding highlights the possibility of trait-specific costs 

and benefits (Morrow & Pitcher 2003; Bro-Jørgensen 2014). For example, if horned,  dung beetle 
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species with larger testes are predicted to have increased proportions of ‘minor’ males adopting 335 

alternative mating strategies (Simmons et al. 2007), this is likely to reduce reproductive skew in male 

populations and possibly negate the beneficial effects of pre-copulatory sexual selection in this 

system. It is also possible that the increased level of polyandry associated with larger testes may 

decrease levels of paternal provisioning (Ball et al. 2017) and reduce the reproductive potential of 

stressed populations further. 340 

The negative relationship between testes mass and abundance could also arise if increased mating 

rates and levels of sperm competition reduce female fitness via harmful male traits such as seminal 

fluids (Chapman 2001) or mechanical damage (Arnqvist et al. 2005) and therefore reduce overall 

population fitness (Holland & Rice 1999).  Although we do not know the strength of sexual conflict in 

the species studied here it seems an unlikely explanation for this observation because in 345 

Onthophagus taurus, a congeneric of many of the species in the current study, there is little 

evidence of strong sexual conflict, with multiple female matings leading to higher female fitness 

(Simmons & García-González 2008; Garcia-Gonzalez & Simmons 2011; Simmons & Holley 2011).  

This is the first study of wild populations to find a positive effect of pre-copulatory sexual selection 

at the population-level and find evidence indicating that species with increased intensity of male-350 

male competition are more likely to persist after modification of the environment. Understanding 

which species may be particularly prone to extinction after environmental change is important when 

evaluating species conservation status and management practices. Due to sexual selection being 

ubiquitous in sexually reproducing species, further knowledge of its influence on population fitness 

within our rapidly changing world is becoming increasingly important.  355 
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Figures 
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Figure 1: The effect of species being horned or hornless on (a)  species richness and (b) abundance of species 

in each trap across the disturbance gradient: old growth forest (OGF), selectively logged forest (SLF), heavily 

logged forest (HLF), and oil palm plantation (OPP). The y-axis in b is on a square-root scale to improve 

visualisation of data. 
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Figure 2: The effect of investment in horns after controlling for the effect of body size (residual horn size from 

a log-log transformed regression of horn length on body size, used here for illustrative purposes) on the mean 

abundance of species per trap across the disturbance gradient: old growth forest (OGF), selectively logged 

forest (SLF), heavily logged forest (HLF), and oil palm plantation (OPP). The y-axis is on a square-root scale to 580 

improve visualisation of data and error bars indicate SE.  

  



 

 

 

Figure 3: The effect of testes mass after controlling for effect of body mass on the mean abundance of species 585 

per trap across the disturbance gradient: old growth forest (OGF), selectively logged forest (SLF), heavily 

logged forest (HLF), and oil palm plantation (OPP). The y-axis is on a square-root scale to improve visualisation 

of data and error bars indicate SE. As for fig. 2, residual testes mass from a log-log regression of testes mass on 

total body mass is used to represent relative testes mass for illustrative purposes only. 
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