928 research outputs found

    Exercise-Induced Changes in Exhaled NO Differentiates Asthma With or Without Fixed Airway Obstruction From COPD With Dynamic Hyperinflation.

    Get PDF
    Asthmatic patients with fixed airway obstruction (FAO) and patients with chronic obstructive pulmonary disease (COPD) share similarities in terms of irreversible pulmonary function impairment. Exhaled nitric oxide (eNO) has been documented as a marker of airway inflammation in asthma, but not in COPD. To examine whether the basal eNO level and the change after exercise may differentiate asthmatics with FAO from COPD, 27 normal subjects, 60 stable asthmatics, and 62 stable COPD patients were studied. Asthmatics with FAO (n = 29) were defined as showing a postbronchodilator FEV(1)/forced vital capacity (FVC) ≤70% and FEV(1) less than 80% predicted after inhaled salbutamol (400 μg). COPD with dynamic hyperinflation (n = 31) was defined as a decrease in inspiratory capacity (ΔIC%) after a 6 minute walk test (6MWT). Basal levels of eNO were significantly higher in asthmatics and COPD patients compared to normal subjects. The changes in eNO after 6MWT were negatively correlated with the percent change in IC (r = −0.380, n = 29, P = 0.042) in asthmatics with FAO. Their levels of basal eNO correlated with the maximum mid-expiratory flow (MMEF % predicted) before and after 6MWT. In COPD patients with air-trapping, the percent change of eNO was positively correlated to ΔIC% (rs = 0.404, n = 31, P = 0.024). We conclude that asthma with FAO may represent residual inflammation in the airways, while dynamic hyperinflation in COPD may retain NO in the distal airspace. eNO changes after 6MWT may differentiate the subgroups of asthma or COPD patients and will help toward delivery of individualized therapy for airflow obstruction

    A unified constitutive model for asymmetric tension and compression creep-ageing behaviour of naturally aged Al-Cu-Li alloy

    Get PDF
    A set of unified constitutive equations is presented that predict the asymmetric tension and compression creep behaviour and recently observed double primary creep of pre-stretched/naturally aged aluminium-cooper-lithium alloy AA2050-T34. The evolution of the primary micro- and macro-variables related to the precipitation hardening and creep deformation of the alloy during creep age forming (CAF) are analysed and modelled. Equations for the yield strength evolution of the alloy, including an initial reversion and subsequent strengthening, are proposed based on a theory of concurrent dissolution, re-nucleation and growth of precipitates during artificial ageing. We present new observations of so-called double primary creep during the CAF process. This phenomenon is then predicted by introducing effects of interacting microstructures, including evolving precipitates, diffusing solutes and dislocations, into the sinh-law creep model. In addition, concepts of threshold creep stress σth and a microstructure-dependant creep variable H, which behave differently under different external stress directions, are proposed and incorporated into the creep model. This enables prediction of the asymmetric tension and compression creep-ageing behaviour of the alloy. Quantitative transmission electron microscopy (TEM) and related small-angle X-ray scattering (SAXS) analysis have been carried out for selected creep-aged samples to assist the development and calibration of the constitutive model. A good agreement has been achieved between the experimental results and the model. The model has the potential to be applied to creep age forming of other heat-treatable aluminium alloys

    A modular trigger for the development of selective superoxide probes

    Get PDF

    Hong Kong Chinese school children with elevated urine melamine levels: A prospective follow up study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 2008, the outbreak of kidney stones in children fed by melamine-tainted milk products in Mainland China has caused major public concern of food safety. We identified Hong Kong school children with elevated urine melamine level from a community-based school survey in 2007-08 and reviewed their clinical status in 2009.</p> <p>Methods</p> <p>In 2007-08, 2119 school children participated in a primary and secondary school survey in Hong Kong using a cluster sampling method. Urine aliquots from 502 subjects were assayed for melamine level. High urine melamine level was defined as urine melamine/creatinine ratio >7.1 μg/mmol. Subjects with high urine melamine level were invited for clinical evaluation in 2009 including urinalysis and ultrasound imaging of the urinary system.</p> <p>Results</p> <p>The age range of this subcohort was 6 - 20 years with 67% girls (335 female and 167 male subjects). The spot urine melamine/creatinine ratio of the 502 urine aliquots ranged from undetectable to 1467 μg/mmol (median 0.8 μg/mmol). Of these, 213 subjects had undetectable level (42%). We invited 47 (9%) subjects with high urine melamine level for re-evaluation and one subject declined. The median duration of follow-up was 23.5 months (interquartile range: 19.8 - 30.6 months). None of the 46 subjects (28% boys, mean age 13.9 ± 2.9 years) had any abnormality detected on ultrasound study of the urinary system. All subjects had stable renal function with a median urine albumin-creatinine ratio of 0.70 mg/mmol (interquartile range: 0.00 - 2.55 mg/mmol).</p> <p>Conclusions</p> <p>Hong Kong Chinese school children with high urine melamine levels appeared to have benign clinical course in the short term although a long term follow-up study is advisable in those with persistently high urine melamine level.</p

    Functional significance of the hepaCAM gene in bladder cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The hepaCAM gene encodes a new immunoglobulin-like cell adhesion molecule, and its expression is suppressed in a variety of human cancers. Additionally, hepaCAM possesses properties often observed in tumor suppressor genes. However, the expression and biological function of hepaCAM has not been investigated in bladder cancer. Therefore we sought to examine hepaCAM expression and the relationship between its structure and function in human transitional cell carcinoma of bladder (TCCB).</p> <p>Materials and methods</p> <p>HepaCAM expression was evaluated in 28 normal and 34 TCCB bladder specimens and 2 TCCB cell lines using semi-quantitative RT-PCR. The wild-type hepaCAM and the extracellular domain-truncated mutant gene were transfected into the TCCB cell line T24, and the biological properties of both the wild-type gene and the domain-truncated mutant were then assessed.</p> <p>Results</p> <p>HepaCAM expression was down-regulated in 82% (28/34) of TCCB specimens and undetectable in the 2 TCCB cell lines tested. The localization of hepaCAM appeared to be dependent on cell density in T24 cells. In widely spread cells, hepaCAM accumulated on the perinuclear membrane and the cell surface protrusions, whereas in confluent cells, hepaCAM was predominantly localized at the sites of cell-cell contacts on the cell membrane. Functionally, hepaCAM expressed not only increased cell spreading, delayed cell detachment, enhanced wound healing and increased cell invasion; it also inhibited cell growth (P < 0.01). When the extracellular domain was deleted, the localization of hepaCAM was significantly altered, and it lost both its adhesive function and its influence on cell growth.</p> <p>Conclusions</p> <p>HepaCAM is involved in cell adhesion and growth control, and its expression is frequently silenced in TCCB. The extracellular domain of hepaCAM is essential to its physiological and biological functions.</p

    Expression and Differential Responsiveness of Central Nervous System Glial Cell Populations to the Acute Phase Protein Serum Amyloid A

    Get PDF
    Acute-phase response is a systemic reaction to environmental/inflammatory insults and involves hepatic production of acute-phase proteins, including serum amyloid A (SAA). Extrahepatically, SAA immunoreactivity is found in axonal myelin sheaths of cortex in Alzheimer's disease and multiple sclerosis (MS), although its cellular origin is unclear. We examined the responses of cultured rat cortical astrocytes, microglia and oligodendrocyte precursor cells (OPCs) to master pro-inflammatory cytokine tumour necrosis factor (TNF)-\u3b1 and lipopolysaccaride (LPS). TNF-\u3b1 time-dependently increased Saa1 (but not Saa3) mRNA expression in purified microglia, enriched astrocytes, and OPCs (as did LPS for microglia and astrocytes). Astrocytes depleted of microglia were markedly less responsive to TNF-\u3b1 and LPS, even after re-addition of microglia. Microglia and enriched astrocytes showed complementary Saa1 expression profiles following TNF-\u3b1 or LPS challenge, being higher in microglia with TNF-\u3b1 and higher in astrocytes with LPS. Recombinant human apo-SAA stimulated production of both inflammatory mediators and its own mRNA in microglia and enriched, but not microglia-depleted astrocytes. Co-ultramicronized palmitoylethanolamide/luteolin, an established anti-inflammatory/neuroprotective agent, reduced Saa1 expression in OPCs subjected to TNF-\u3b1 treatment. These last data, together with past findings suggest that co-ultramicronized palmitoylethanolamide/luteolin may be a novel approach in the treatment of inflammatory demyelinating disorders like MS

    Phenotypic Variation and Bistable Switching in Bacteria

    Get PDF
    Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.

    Serum amyloid A primes microglia for ATP-dependent interleukin-1\u3b2 release

    Get PDF
    Acute-phase response is a systemic reaction to environmental/inflammatory insults and involves production of acute-phase proteins, including serum amyloid A (SAA). Interleukin-1\u3b2 (IL-1\u3b2), a master regulator of neuroinflammation produced by activated inflammatory cells of the myeloid lineage, in particular microglia, plays a key role in the pathogenesis of acute and chronic diseases of the peripheral nervous system and CNS. IL-1\u3b2 release is promoted by ATP acting at the purinergic P2X7 receptor (P2X7R) in cells primed with toll-like receptor (TLR) ligands

    Search for CP violation in D0 and D+ decays

    Get PDF
    A high statistics sample of photoproduced charm particles from the FOCUS (E831) experiment at Fermilab has been used to search for CP violation in the Cabibbo suppressed decay modes D+ to K-K+pi+, D0 to K-K+ and D0 to pi-pi+. We have measured the following CP asymmetry parameters: A_CP(K-K+pi+) = +0.006 +/- 0.011 +/- 0.005, A_CP(K-K+) = -0.001 +/- 0.022 +/- 0.015 and A_CP(pi-pi+) = +0.048 +/- 0.039 +/- 0.025 where the first error is statistical and the second error is systematic. These asymmetries are consistent with zero with smaller errors than previous measurements.Comment: 12 pages, 4 figure
    corecore