897 research outputs found

    Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging

    Get PDF
    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence.1152sciescopu

    Turbulence in Focus: Benchmarking Scaling Behavior of 3D Volumetric Super-Resolution with BLASTNet 2.0 Data

    Full text link
    Analysis of compressible turbulent flows is essential for applications related to propulsion, energy generation, and the environment. Here, we present BLASTNet 2.0, a 2.2 TB network-of-datasets containing 744 full-domain samples from 34 high-fidelity direct numerical simulations, which addresses the current limited availability of 3D high-fidelity reacting and non-reacting compressible turbulent flow simulation data. With this data, we benchmark a total of 49 variations of five deep learning approaches for 3D super-resolution - which can be applied for improving scientific imaging, simulations, turbulence models, as well as in computer vision applications. We perform neural scaling analysis on these models to examine the performance of different machine learning (ML) approaches, including two scientific ML techniques. We demonstrate that (i) predictive performance can scale with model size and cost, (ii) architecture matters significantly, especially for smaller models, and (iii) the benefits of physics-based losses can persist with increasing model size. The outcomes of this benchmark study are anticipated to offer insights that can aid the design of 3D super-resolution models, especially for turbulence models, while this data is expected to foster ML methods for a broad range of flow physics applications. This data is publicly available with download links and browsing tools consolidated at https://blastnet.github.io.Comment: Accepted in Advances in Neural Information Processing Systems 36 (NeurIPS 2023). 55 pages, 21 figures. v2: Corrected co-author name. Keywords: Super-resolution, 3D, Neural Scaling, Physics-informed Loss, Computational Fluid Dynamics, Partial Differential Equations, Turbulent Reacting Flows, Direct Numerical Simulation, Fluid Mechanics, Combustio

    From DNA sequence to application: possibilities and complications

    Get PDF
    The development of sophisticated genetic tools during the past 15 years have facilitated a tremendous increase of fundamental and application-oriented knowledge of lactic acid bacteria (LAB) and their bacteriophages. This knowledge relates both to the assignments of open reading frames (ORF’s) and the function of non-coding DNA sequences. Comparison of the complete nucleotide sequences of several LAB bacteriophages has revealed that their chromosomes have a fixed, modular structure, each module having a set of genes involved in a specific phase of the bacteriophage life cycle. LAB bacteriophage genes and DNA sequences have been used for the construction of temperature-inducible gene expression systems, gene-integration systems, and bacteriophage defence systems. The function of several LAB open reading frames and transcriptional units have been identified and characterized in detail. Many of these could find practical applications, such as induced lysis of LAB to enhance cheese ripening and re-routing of carbon fluxes for the production of a specific amino acid enantiomer. More knowledge has also become available concerning the function and structure of non-coding DNA positioned at or in the vicinity of promoters. In several cases the mRNA produced from this DNA contains a transcriptional terminator-antiterminator pair, in which the antiterminator can be stabilized either by uncharged tRNA or by interaction with a regulatory protein, thus preventing formation of the terminator so that mRNA elongation can proceed. Evidence has accumulated showing that also in LAB carbon catabolite repression in LAB is mediated by specific DNA elements in the vicinity of promoters governing the transcription of catabolic operons. Although some biological barriers have yet to be solved, the vast body of scientific information presently available allows the construction of tailor-made genetically modified LAB. Today, it appears that societal constraints rather than biological hurdles impede the use of genetically modified LAB.

    Angiotensin-converting enzyme gene insertion/deletion polymorphism is associated with risk of oral precancerous lesion in betel quid chewers

    Get PDF
    To investigate whether angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism is related to the risk of oral precancerous lesions (OPL) in Taiwanese subjects who chew betel quid, a total of 61 betel quid chewers having OPL were compared with 61 asymptomatic betel quid chewers matched for betel quid chewing duration and dosage. The frequency of homozygote for ACE D variant is significantly higher in the case subjects than that of the controls (44.3 vs 24.6%; P=0.0108). The adjusted odds ratio of the D homozygous for the risk of OPL is 8.10 (95% confidence interval (CI)=2.04–32.19, P=0.003). In the allelic base analysis, the D allele is also significantly associated with higher risk of OPL. When grouping the study subjects by smoking status, the association between ACE I/D polymorphism and risk of OPL was only observed in nonsmokers. Our results support the theory that genetic factors may contribute to the susceptibility of OPL and suggest that smoking and genetic factors may be differently involved in the development of OPL

    Self-assembled three dimensional network designs for soft electronics.

    Get PDF
    Low modulus, compliant systems of sensors, circuits and radios designed to intimately interface with the soft tissues of the human body are of growing interest, due to their emerging applications in continuous, clinical-quality health monitors and advanced, bioelectronic therapeutics. Although recent research establishes various materials and mechanics concepts for such technologies, all existing approaches involve simple, two-dimensional (2D) layouts in the constituent micro-components and interconnects. Here we introduce concepts in three-dimensional (3D) architectures that bypass important engineering constraints and performance limitations set by traditional, 2D designs. Specifically, open-mesh, 3D interconnect networks of helical microcoils formed by deterministic compressive buckling establish the basis for systems that can offer exceptional low modulus, elastic mechanics, in compact geometries, with active components and sophisticated levels of functionality. Coupled mechanical and electrical design approaches enable layout optimization, assembly processes and encapsulation schemes to yield 3D configurations that satisfy requirements in demanding, complex systems, such as wireless, skin-compatible electronic sensors

    Intranasal Delivery of Cholera Toxin Induces Th17-Dominated T-Cell Response to Bystander Antigens

    Get PDF
    Cholera toxin (CT) is a potent vaccine adjuvant, which promotes mucosal immunity to protein antigen given by nasal route. It has been suggested that CT promotes T helper type 2 (Th2) response and suppresses Th1 response. We here report the induction of Th17-dominated responses in mice by intranasal delivery of CT. This dramatic Th17-driving effect of CT, which was dependent on the B subunit, was observed even in Th1 or Th2-favored conditions of respiratory virus infection. These dominating Th17 responses resulted in the significant neutrophil accumulation in the lungs of mice given CT. Both in vitro and in vivo treatment of CT induced strongly augmented IL-6 production, and Th17-driving ability of CT was completely abolished in IL-6 knockout mice, indicating a role of this cytokine in the Th17-dominated T-cell responses by CT. These data demonstrate a novel Th17-driving activity of CT, and help understand the mechanisms of CT adjuvanticity to demarcate T helper responses

    The deuteron: structure and form factors

    Get PDF
    A brief review of the history of the discovery of the deuteron in provided. The current status of both experiment and theory for the elastic electron scattering is then presented.Comment: 80 pages, 33 figures, submited to Advances in Nuclear Physic

    Syndecan 4 Is Involved in Mediating HCV Entry through Interaction with Lipoviral Particle-Associated Apolipoprotein E

    Get PDF
    Hepatitis C virus (HCV) is a major cause of liver disease worldwide and HCV infection represents a major health problem. HCV associates with host lipoproteins forming host/viral hybrid complexes termed lipoviral particles. Apolipoprotein E (apoE) is a lipoprotein component that interacts with heparan sulfate proteoglycans (HSPG) to mediate hepatic lipoprotein uptake, and may likewise mediate HCV entry. We sought to define the functional regions of apoE with an aim to identify critical apoE binding partners involved in HCV infection. Using adenoviral vectors and siRNA to modulate apoE expression we show a direct correlation of apoE expression and HCV infectivity, whereas no correlation exists with viral protein expression. Mutating the HSPG binding domain (HSPG-BD) of apoE revealed key residues that are critical for mediating HCV infection. Furthermore, a novel synthetic peptide that mimics apoE's HSPG-BD directly and competitively inhibits HCV infection. Genetic knockdown of the HSPG proteins syndecan (SDC) 1 and 4 revealed that SDC4 principally mediates HCV entry. Our data demonstrate that HCV uses apoE-SDC4 interactions to enter hepatoma cells and establish infection. Targeting apoE-SDC interactions could be an alternative strategy for blocking HCV entry, a critical step in maintaining chronic HCV infection

    Herbal Medicines for Parkinson's Disease: A Systematic Review of Randomized Controlled Trials

    Get PDF
    OBJECTIVE: We conducted systematic review to evaluate current evidence of herbal medicines (HMs) for Parkinson's disease (PD). METHODS: Along with hand searches, relevant literatures were located from the electronic databases including CENTRAL, MEDLINE, EMBASE, CINAHL, AMED, PsycInfo, CNKI, 7 Korean Medical Databases and J-East until August, 2010 without language and publication status. Randomized controlled trials (RCTs), quasi-randomized controlled trials and randomized crossover trials, which evaluate HMs for idiopathic PD were selected for this review. Two independent authors extracted data from the relevant literatures and any disagreement was solved by discussion. RESULTS: From the 3432 of relevant literatures, 64 were included. We failed to suggest overall estimates of treatment effects on PD because of the wide heterogeneity of used herbal recipes and study designs in the included studies. When compared with placebo, specific effects were not observed in favor of HMs definitely. Direct comparison with conventional drugs suggested that there was no evidence of better effect for HMs. Many studies compared combination therapy with single active drugs and combination therapy showed significant improvement in PD related outcomes and decrease in the dose of anti-Parkinson's drugs with low adverse events rate. CONCLUSION: Currently, there is no conclusive evidence about the effectiveness and efficacy of HMs on PD. For establishing clinical evidence of HMs on PD, rigorous RCTs with sufficient statistical power should be promoted in future
    corecore