349 research outputs found

    Possible astrophysical signatures of heavy stable neutral relics in supergravity models

    Get PDF
    We consider heavy stable neutral particles in the context of supergravity and show that a gravitationally suppressed inflaton decay can produce such particles in cosmologically interesting abundances within a wide mass range 103GeV≤mX≤1011GeV10^3 {\rm GeV} \leq m_X \leq 10^{11} {\rm GeV}. In gravity-mediated supersymmetry breaking models, a heavy particle can decay into its superpartner and a photon-photino pair or a gravitino. Such decays only change the identity of a possible dark matter candidate. However, for 103GeV≤mX≤107GeV10^3 {\rm GeV} \leq m_X \leq 10^7 {\rm GeV}, astrophysical bounds from gamma-ray background and photodissociation of light elements can be more stringent than the overclosure bound, thus ruling out the particle as a dark matter candidate.Comment: 12 page

    On the reheating stage after inflation

    Full text link
    We point out that inflaton decay products acquire plasma masses during the reheating phase following inflation. The plasma masses may render inflaton decay kinematicaly forbidden, causing the temperature to remain frozen for a period at a plateau value. We show that the final reheating temperature may be uniquely determined by the inflaton mass, and may not depend on its coupling. Our findings have important implications for the thermal production of dangerous relics during reheating (e.g., gravitinos), for extracting bounds on particle physics models of inflation from Cosmic Microwave Background anisotropy data, for the production of massive dark matter candidates during reheating, and for models of baryogenesis or leptogensis where massive particles are produced during reheating.Comment: 8 pages, 2 figures. Submitted for publication in Phys. Rev.

    Neutrino Telescopes' Sensitivity to Dark Matter

    Full text link
    The nature of the dark matter of the Universe is yet unknown and most likely is connected with new physics. The search for its composition is under way through direct and indirect detection. Fundamental physical aspects such as energy threshold, geometry and location are taken into account to investigate proposed neutrino telescopes of km^3 volume sensitivities to dark matter. These sensitivities are just sufficient to test a few WIMP scenarios. Telescopes of km^3 volume, such as IceCube, can definitely discover or exclude superheavy (M > 10^10 GeV) Strong Interacting Massive Particles (Simpzillas). Smaller neutrino telescopes such as ANTARES, AMANDA-II and NESTOR can probe a large region of the Simpzilla parameter space.Comment: 28 pages, 9 figure

    Spin Analysis of Supersymmetric Particles

    Full text link
    The spin of supersymmetric particles can be determined at e+e−e^+e^- colliders unambiguously. This is demonstrated for a characteristic set of non-colored supersymmetric particles -- smuons, selectrons, and charginos/neutralinos. The analysis is based on the threshold behavior of the excitation curves for pair production in e+e−e^+e^- collisions, the angular distribution in the production process and decay angular distributions. In the first step we present the observables in the helicity formalism for the supersymmetric particles. Subsequently we confront the results with corresponding analyses of Kaluza-Klein particles in theories of universal extra space dimensions which behave distinctly different from supersymmetric theories. It is shown in the third step that a set of observables can be designed which signal the spin of supersymmetric particles unambiguously without any model assumptions. Finally in the fourth step it is demonstrated that the determination of the spin of supersymmetric particles can be performed experimentally in practice at an e+e−e^+e^- collider.Comment: 39 pages, 14 figure

    CP--violating Chargino Contributions to the Higgs Coupling to Photon Pairs in the Decoupling Regime of Higgs Sector

    Full text link
    In most supersymmetric theories, charginos χ~1,2±\tilde{\chi}^\pm_{1,2} belong to the class of the lightest supersymmetric particles and the couplings of Higgs bosons to charginos are in general complex so that the CP--violating chargino contributions to the loop--induced coupling of the lightest Higgs boson to photon pairs can be sizable even in the decoupling limit of large pseudoscalar mass mAm_A with only the lightest Higgs boson kinematically accessible at future high energy colliders. We introduce a specific benchmark scenario of CP violation consistent with the electric dipole moment constraints and with a commonly accepted baryogenesis mechanism in the minimal supersymmetric Standard Model. Based on the benchmark scenario of CP violation, we demonstrate that the fusion of the lightest Higgs boson in linearly polarized photon--photon collisions can allow us to confirm the existence of the CP--violating chargino contributions {\it even in the decoupling regime of the Higgs sector} for nearly degenerate SU(2) gaugino and higgsino mass parameters of about the electroweak scale.Comment: 1+13 pages, 3 eps figure

    Bianchi type I space and the stability of inflationary Friedmann-Robertson-Walker space

    Full text link
    Stability analysis of the Bianchi type I universe in pure gravity theory is studied in details. We first derive the non-redundant field equation of the system by introducing the generalized Bianchi type I metric. This non-redundant equation reduces to the Friedmann equation in the isotropic limit. It is shown further that any unstable mode of the isotropic perturbation with respect to a de Sitter background is also unstable with respect to anisotropic perturbations. Implications to the choice of physical theories are discussed in details in this paper.Comment: 5 pages, some comment adde

    The effects of orange juice clarification on the physiology of Escherichia coli; growth-based and flow cytometric analysis

    Get PDF
    Orange juice (OJ) is a food product available in various forms which can be processed to a greater or lesser extent. Minimally-processed OJ has a high consumer perception but presents a potential microbiological risk due to acid-tolerant bacteria. Clarification of OJ (such as removal of cloud) is a common processing step in many OJ products. However, many of the antimicrobial components of OJ such as essential oils are present in the cloud fraction. Here, the effect of clarification by filtration on the viability and physiology of Escherichia coli K-12 was tested using total viable count (TVC) and flow cytometric (FCM) analysis. The latter technique was also used to monitor intracellular pH during incubation in OJ. Removal of the OJ cloud fraction was shown to have dramatic effects on bacterial viability and physiology during storage at a range of incubation temperatures. For instance, at 4°C, a significantly lower number of healthy cells and a significantly higher number of injured cells were observed in 0.22μm-filtered OJ at 24h post-inoculation, compared to filtered OJ samples containing particles between 0.22μm and 11μm in size. Similarly, there was a significant difference between the number of healthy bacteria in the 0.7μm-filtered OJ and both 0.22μm-filtered and 1.2μm-filtered OJ after 24hour incubation at 22.5°C. This indicated that OJ cloud between 0.7μm and 0.22μm in size might have an adverse effect on the viability of E. coli K-12. Furthermore, FCM allowed the rapid analysis of bacterial physiology without the requirement for growth on agar plates, and revealed the extent of the viable but non-culturable (VBNC) population. For example, at 4°C, while the FCM viable count did not substantially decrease until 48h, decreases in TVC were observed between 0 and 48hour incubation, due to a subset of injured bacteria entering the VBNC state, hence being unable to grow on agar plates. This study highlights the application of FCM in monitoring bacterial physiology in foods, and potential effects of OJ clarification on bacterial physiology

    Complete solutions to the metric of spherically collapsing dust in an expanding spacetime with a cosmological constant

    Get PDF
    We present semi-analytical solutions to the background equations describing the Lema\^itre-Tolman-Bondi (LTB) metric as well as the homogeneous Friedmann equations, in the presence of dust, curvature and a cosmological constant Lambda. For none of the presented solutions any numerical integration has to be performed. All presented solutions are given for expanding and collapsing phases, preserving continuity in time and radius. Hence, these solutions describe the complete space time of a collapsing spherical object in an expanding universe. In the appendix we present for completeness a solution of the Friedmann equations in the additional presence of radiation, only valid for the Robertson-Walker metric.Comment: 23 pages, one figure. Numerical module for evaluation of the solutions released at http://web.physik.rwth-aachen.de/download/valkenburg/ColLambda/ Matches published version, published under Open Access. Note change of titl
    • …
    corecore