56,952 research outputs found
Deployment/retraction ground testing of a large flexible solar array
The simulated zero-gravity ground testing of the flexible fold-up solar array consisting of eighty-four full-size panels (.368 m x .4 m each) is addressed. Automatic, hands-off extension, retraction, and lockup operations are included. Three methods of ground testing were investigated: (1) vertical testing; (2) horizontal testing, using an overhead water trough to support the panels; and (3) horizontal testing, using an overhead track in conjunction with a counterweight system to support the panels. Method 3 was selected as baseline. The wing/assembly vertical support structure, the five-tier overhead track, and the mast-element support track comprise the test structure. The flexible solar array wing assembly was successfully extended and retracted numerous times under simulated zero-gravity conditions
Large-eddy simulation and wall modelling of turbulent channel flow
We report large-eddy simulation (LES) of turbulent channel flow. This LES neither resolves nor partially resolves the near-wall region. Instead, we develop a special near-wall subgrid-scale (SGS) model based on wall-parallel filtering and wall-normal averaging of the streamwise momentum equation, with an assumption of local inner scaling used to reduce the unsteady term. This gives an ordinary differential equation (ODE) for the wall shear stress at every wall location that is coupled with the LES. An extended form of the stretched-vortex SGS model, which incorporates the production of near-wall Reynolds shear stress due to the winding of streamwise momentum by near-wall attached SGS vortices, then provides a log relation for the streamwise velocity at the top boundary of the near-wall averaged domain. This allows calculation of an instantaneous slip velocity that is then used as a ‘virtual-wall’ boundary condition for the LES. A Kármán-like constant is calculated dynamically as part of the LES. With this closure we perform LES of turbulent channel flow for Reynolds numbers Re_τ based on the friction velocity u_τ and the channel half-width δ in the range 2 × 10^3 to 2 × 10^7. Results, including SGS-extended longitudinal spectra, compare favourably with the direct numerical simulation (DNS) data of Hoyas & Jiménez (2006) at Re_τ = 2003 and maintain an O(1) grid dependence on Re_τ
Direct numerical simulation and large-eddy simulation of stationary buoyancy-driven turbulence
We report direct numerical simulation (DNS) and large-eddy simulation (LES) of
statistically stationary buoyancy-driven turbulent mixing of an active scalar. We use
an adaptation of the fringe-region technique, which continually supplies the flow with
unmixed fluids at two opposite faces of a triply periodic domain in the presence
of gravity, effectively maintaining an unstably stratified, but statistically stationary
flow. We also develop a new method to solve the governing equations, based on
the Helmholtz–Hodge decomposition, that guarantees discrete mass conservation
regardless of iteration errors. Whilst some statistics were found to be sensitive to the
computational box size, we show, from inner-scaled planar spectra, that the small
scales exhibit similarity independent of Reynolds number, density ratio and aspect
ratio. We also perform LES of the present flow using the stretched-vortex subgridscale
(SGS) model. The utility of an SGS scalar flux closure for passive scalars is
demonstrated in the present active-scalar, stably stratified flow setting. The multi-scale
character of the stretched-vortex SGS model is shown to enable extension of some
second-order statistics to subgrid scales. Comparisons with DNS velocity spectra
and velocity-density cospectra show that both the resolved-scale and SGS-extended
components of the LES spectra accurately capture important features of the DNS
spectra, including small-scale anisotropy and the shape of the viscous roll-off
Large-eddy simulation of large-scale structures in long channel flow
We investigate statistics of large-scale structures from large-eddy simulation (LES) of turbulent channel flow at friction Reynolds numbers Re_τ = 2K and 200K (where K denotes 1000). In order to capture the behaviour of large-scale structures properly, the channel length is chosen to be 96 times the channel half-height. In agreement with experiments, these large-scale structures are found to give rise to an apparent amplitude modulation of the underlying small-scale fluctuations. This effect is explained in terms of the phase relationship between the large- and small-scale activity. The shape of the dominant large-scale structure is investigated by conditional averages based on the large-scale velocity, determined using a filter width equal to the channel half-height. The conditioned field demonstrates coherence on a scale of several times the filter width, and the small-scale–large-scale relative phase difference increases away from the wall, passing through π/2 in the overlap region of the mean velocity before approaching π further from the wall. We also found that, near the wall, the convection velocity of the large scales departs slightly, but unequivocally, from the mean velocity
Statistical significance of variables driving systematic variation
There are a number of well-established methods such as principal components
analysis (PCA) for automatically capturing systematic variation due to latent
variables in large-scale genomic data. PCA and related methods may directly
provide a quantitative characterization of a complex biological variable that
is otherwise difficult to precisely define or model. An unsolved problem in
this context is how to systematically identify the genomic variables that are
drivers of systematic variation captured by PCA. Principal components (and
other estimates of systematic variation) are directly constructed from the
genomic variables themselves, making measures of statistical significance
artificially inflated when using conventional methods due to over-fitting. We
introduce a new approach called the jackstraw that allows one to accurately
identify genomic variables that are statistically significantly associated with
any subset or linear combination of principal components (PCs). The proposed
method can greatly simplify complex significance testing problems encountered
in genomics and can be utilized to identify the genomic variables significantly
associated with latent variables. Using simulation, we demonstrate that our
method attains accurate measures of statistical significance over a range of
relevant scenarios. We consider yeast cell-cycle gene expression data, and show
that the proposed method can be used to straightforwardly identify
statistically significant genes that are cell-cycle regulated. We also analyze
gene expression data from post-trauma patients, allowing the gene expression
data to provide a molecularly-driven phenotype. We find a greater enrichment
for inflammatory-related gene sets compared to using a clinically defined
phenotype. The proposed method provides a useful bridge between large-scale
quantifications of systematic variation and gene-level significance analyses.Comment: 35 pages, 1 table, 6 main figures, 7 supplementary figure
Recommended from our members
The double-edged sword of jurisdictional entrenchment: Explaining HR professionals’ failed strategic repositioning
To protect themselves against deskilling and obsolescence, professionals must periodically revise their claims to authority and expertise. Although we understand these dynamics in the broader system of professions, we have a less-complete understanding of how this process unfolds in specific organizational contexts. Yet given the ubiquity of embedded professionals, this context is where jurisdictional shifts increasingly take place. Drawing on a comparative ethnographic study of HR professionals in two engineering firms, we introduce the concept of jurisdictional entrenchment to explain the challenges embedded professionals face when they attempt to redefine their jurisdiction. Jurisdictional entrenchment describes a condition in which embedded professionals have accumulated tasks, tactics, and expertise that enable them to make jurisdictional claims in an organization. We show how such entrenchment is a double-edged sword: instrumental to the ability of professionals to withstand challenges to their authority, but detrimental when expertise and skills devalued by the professionals remain in high demand by clients, thus preventing the professionals’ shift to their aspirational jurisdiction. Overall, our study contributes to a better understanding of how embedded professionals renegotiate jurisdictional claims within the constraints of organizational employment
Roughness effects in turbulent forced convection
We conducted direct numerical simulations (DNSs) of turbulent flow over
three-dimensional sinusoidal roughness in a channel. A passive scalar is
present in the flow with Prandtl number , to study heat transfer by
forced convection over this rough surface. The minimal channel is used to
circumvent the high cost of simulating high Reynolds number flows, which
enables a range of rough surfaces to be efficiently simulated. The near-wall
temperature profile in the minimal channel agrees well with that of the
conventional full-span channel, indicating it can be readily used for
heat-transfer studies at a much reduced cost compared to conventional DNS. As
the roughness Reynolds number, , is increased, the Hama roughness
function, , increases in the transitionally rough regime before
tending towards the fully rough asymptote of , where
is a constant that depends on the particular roughness geometry and
is the von K\'arm\'an constant. In this fully rough
regime, the skin-friction coefficient is constant with bulk Reynolds number,
. Meanwhile, the temperature difference between smooth- and rough-wall
flows, , appears to tend towards a constant value,
. This corresponds to the Stanton number (the temperature
analogue of the skin-friction coefficient) monotonically decreasing with
in the fully rough regime. Using shifted logarithmic velocity and temperature
profiles, the heat transfer law as described by the Stanton number in the fully
rough regime can be derived once both the equivalent sand-grain roughness
and the temperature difference are known. In
meteorology, this corresponds to the ratio of momentum and heat transfer
roughness lengths, , being linearly proportional to ,
the momentum roughness length [continued]...Comment: Accepted (In press) in the Journal of Fluid Mechanic
- …