1,538 research outputs found

    Thermal Analysis and Characterization of Polystyrene Initiated by Benzoyl Peroxide

    Get PDF
    PresentationBased on the complexity of the polystyrene polymerization mechanism initiated by benzoyl peroxide (BPO), the thermal risk of the reaction process was estimated using thermal analysis and characterization. The polymerization process was thermally analysed using an adiabatic rate calorimeter and differential scanning calorimeter. The results demonstrated that the onset reaction temperature, adiabatic temperature rise, and maximum temperature of the synthesis reaction of BPO-initiated polymerization were lower than those of thermos initiated polymerization. Moreover, nuclear magnetic resonance imaging, gel permeation chromatography, and Fourier transform infrared spectrometry were used to characterize the polymerization products obtained under the two initiation conditions. The polystyrene obtained using the two initiation methods had the same hydrogen structure; however, their molecular weight and distribution uniformity differed considerably, and the BPO-initiated process was discovered to include the effects of the thermos initiated process. Moreover, the free radicals produced by BPO decomposition participated in the chain reaction of polystyrene polymerization, accelerated instantaneous grain growth, and promoted the formation of short- chain polystyrene. In summary, the BPO-initiated polymerization process exhibited the desired thermal safety characteristics and has potential for practical use

    Recombinase-Based Genetic Circuit Optimization

    Get PDF
    International audienceThe rapid advancements of synthetic biology show promising potential in biomedical and other applications. Recently, recombinases were proposed as a tool to engineer genetic logic circuits with long-term memory in living and even mammalian cells. The technology is under active development, and the complexity of engineered genetic circuits grows continuously. However, how to minimize a genetic circuit composed of recombinase-based logic gates remain largely open. In this paper, we formulate the problem as a cubic-time assignment problem and solved by a 0/1-ILP solver to minimize DNA sequence length of genetic circuits. Experimental results show effective reduction of our optimization method, which may be crucial to enable practical realization of complex genetic circuits

    Enterovirus type 71 2A protease functions as a transcriptional activator in yeast

    Get PDF
    Enterovirus type 71 (EV71) 2A protease exhibited strong transcriptional activity in yeast cells. The transcriptional activity of 2A protease was independent of its protease activity. EV71 2A protease retained its transcriptional activity after truncation of 40 amino acids at the N-terminus but lost this activity after truncation of 60 amino acids at the N-terminus or deletion of 20 amino acids at the C-terminus. Thus, the acidic domain at the C-terminus of this protein is essential for its transcriptional activity. Indeed, deletion of amino acids from 146 to 149 (EAME) in this acidic domain lost the transcriptional activity of EV71 2A protein though still retained its protease activity. EV71 2A protease was detected both in the cytoplasm and nucleus using confocal microscopy analysis. Coxsackie virus B3 2A protease also exhibited transcriptional activity in yeast cells. As expected, an acidic domain in the C-terminus of Coxsackie virus B3 2A protease was also identified. Truncation of this acidic domain resulted in the loss of transcriptional activity. Interestingly, this acidic region of poliovirus 2A protease is critical for viral RNA replication. The transcriptional activity of the EV71 or Coxsackie virus B3 2A protease should play a role in viral replication and/or pathogenesis

    Doped GaSe crystals for laser frequency conversion

    Get PDF
    In this review, we introduce the current state of the art of the growth technology of pure, lightly doped, and heavily doped (solid solution) nonlinear gallium selenide (GaSe) crystals that are able to generate broadband emission from the near infrared (IR) (0.8 mm) through the mid- and far-IR (terahertz (THz)) ranges and further into the millimeter wave (5.64 mm) range. For the first time, we show that appropriate doping is an efficient method controlling a range of the physical properties of GaSe crystals that are responsible for frequency conversion efficiency and exploitation parameters. After appropriate doping, uniform crystals grown by a modified technology with heat field rotation possess up to 3 times lower absorption coefficient in the main transparency window and THz range. Moreover, doping provides the following benefits: raises by up to 5 times the optical damage threshold; almost eliminates two-photon absorption; allows for dispersion control in the THz range independent of the mid-IR dispersion; and enables crystal processing in arbitrary directions due to the strengthened lattice. Finally, doped GaSe demonstrated better usefulness for processing compared with GaSe grown by the conventional technology and up to 15 times higher frequency conversion efficiency

    A Polymer-Based Capacitive Sensing Array for Normal and Shear Force Measurement

    Get PDF
    In this work, we present the development of a polymer-based capacitive sensing array. The proposed device is capable of measuring normal and shear forces, and can be easily realized by using micromachining techniques and flexible printed circuit board (FPCB) technologies. The sensing array consists of a polydimethlysiloxane (PDMS) structure and a FPCB. Each shear sensing element comprises four capacitive sensing cells arranged in a 2 × 2 array, and each capacitive sensing cell has two sensing electrodes and a common floating electrode. The sensing electrodes as well as the metal interconnect for signal scanning are implemented on the FPCB, while the floating electrodes are patterned on the PDMS structure. This design can effectively reduce the complexity of the capacitive structures, and thus makes the device highly manufacturable. The characteristics of the devices with different dimensions were measured and discussed. A scanning circuit was also designed and implemented. The measured maximum sensitivity is 1.67%/mN. The minimum resolvable force is 26 mN measured by the scanning circuit. The capacitance distributions induced by normal and shear forces were also successfully captured by the sensing array

    Phosducin-like protein 1 is essential for G-protein assembly and signaling in retinal rod photoreceptors

    Get PDF
    G protein β subunits perform essential neuronal functions as part of G protein βγ and Gβ(5)-RGS (Regulators of G protein Signaling) complexes. Both Gβγ and Gβ(5)-RGS are obligate dimers that are thought to require the assistance of the cytosolic chaperonin CCT and a co-chaperone, phosducin-like protein 1 (PhLP1) for dimer formation. To test this hypothesis in vivo, we deleted the Phlp1 gene in mouse (Mus musculus) retinal rod photoreceptor cells and measured the effects on G protein biogenesis and visual signal transduction. In the PhLP1-depleted rods, Gβγ dimer formation was decreased 50-fold, resulting in a more than 10-fold decrease in light sensitivity. Moreover, a 20-fold reduction in Gβ(5) and RGS9-1 expression was also observed, causing a 15-fold delay in the shutoff of light responses. These findings conclusively demonstrate in vivo that PhLP1 is required for the folding and assembly of both Gβγ and Gβ(5)-RGS9

    Coalescence of RAGE in Lipid Rafts in Response to Cytolethal Distending Toxin-Induced Inflammation

    Get PDF
    The receptor for advanced glycation end products (RAGE) interacts with various molecules in the cell membrane to induce an inflammatory response. The cytolethal distending toxin (CDT) produced by Campylobacter jejuni contains three subunits: CdtA, CdtB, and CdtC. Amongst, CdtA and CdtC interact with membrane lipid rafts, by which CdtB enters the nucleus to induce pathogenesis. In this study, we first explored the relationships between RAGE, lipid rafts, and inflammation in gastrointestinal epithelial cells exposed to CDT. Our results showed that CDT activated the expression of RAGE and high mobility group box 1 (HMGB1), followed by the recruitment of RAGE into lipid rafts. In contrast, RAGE antagonist inhibited CDT-induced inflammation via the RAGE-HMGB1 axis. Disruption of lipid rafts decreased CDT-induced downstream signaling, which in turn attenuated the inflammatory response. Furthermore, in vivo studies revealed severe inflammation and upregulation of RAGE and IL-1β in the intestinal tissues of CDT-treated mice. These results demonstrate that mobilization of RAGE to lipid rafts plays a crucial role in CDT-induced inflammation

    Human Trichinosis after Consumption of Soft-Shelled Turtles, Taiwan

    Get PDF
    In 2008, an outbreak of human trichinosis associated with ingestion of raw soft-shelled turtles was identified and investigated in Taiwan. The data suggested that patients were likely infected with Trichinella papuae
    corecore