273 research outputs found

    Dilute magnetic semiconductor and half metal behaviors in 3d transition-metal doped black and blue phosphorenes: a first-principles study

    Full text link
    We present first-principles density-functional calculations for the structural, electronic, and magnetic properties of substitutional 3d transition metal (TM) impurities in two-dimensional black and blue phosphorenes. We find that the magnetic properties of such substitutional impurities can be understood in terms of a simple model based on the Hund's rule. The TM-doped black phosphorenes with Ti, V, Cr, Mn, Fe and Ni impurities show dilute magnetic semiconductor (DMS) properties while those with Sc and Co impurities show nonmagnetic properties. On the other hand, the TM-doped blue phosphorenes with V, Cr, Mn and Fe impurities show DMS properties, those with Ti and Ni impurities show half-metal properties, whereas Sc and Co doped systems show nonmagnetic properties. We identify two different regimes depending on the occupation of the hybridized electronic states of TM and phosphorous atoms: (i) bonding states are completely empty or filled for Sc- and Co-doped black and blue phosphorenes, leading to non-magnetic; (ii) non-bonding d states are partially occupied for Ti-, V-, Cr-, Mn-, Fe- and Ni-doped black and blue phosphorenes, giving rise to large and localized spin moments. These results provide a new route for the potential applications of dilute magnetic semiconductor and half-metal in spintronic devices by employing black and blue phosphorenes.Comment: 9 pages, 7 figure

    Duplex-specific nuclease efficiently removes rRNA for prokaryotic RNA-seq

    Get PDF
    Next-generation sequencing has great potential for application in bacterial transcriptomics. However, unlike eukaryotes, bacteria have no clear mechanism to select mRNAs over rRNAs; therefore, rRNA removal is a critical step in sequencing-based transcriptomics. Duplex-specific nuclease (DSN) is an enzyme that, at high temperatures, degrades duplex DNA in preference to single-stranded DNA. DSN treatment has been successfully used to normalize the relative transcript abundance in mRNA-enriched cDNA libraries from eukaryotic organisms. In this study, we demonstrate the utility of this method to remove rRNA from prokaryotic total RNA. We evaluated the efficacy of DSN to remove rRNA by comparing it with the conventional subtractive hybridization (Hyb) method. Illumina deep sequencing was performed to obtain transcriptomes from Escherichia coli grown under four growth conditions. The results clearly showed that our DSN treatment was more efficient at removing rRNA than the Hyb method was, while preserving the original relative abundance of mRNA species in bacterial cells. Therefore, we propose that, for bacterial mRNA-seq experiments, DSN treatment should be preferred to Hyb-based methods.

    Regulation of Pituitary Adenylate Cyclase-activating Polypeptide Gene Transcription by TTF-1, a Homeodomain-containing Transcription Factor

    Get PDF
    Pituitary adenylate cyclase-activating polypeptide (PACAP) is an important hypophysiotrophic factor as well as a regulator for immune, reproductive, and neural tissues. We recently found that TTF-1, a homeodomain-containing transcription factor essential for the development of the fetal diencephalon, is postnatally expressed in the hypothalamic area and plays a transcription regulatory role for certain neurohormones. Based on the similarity of synthesis sites between PACAP and TTF-1 and, moreover, on the presence of conserved core TTF-1 binding motifs in the 5′-flanking region of the PACAP gene, we sought to uncover a regulatory role of TTF-1 in PACAP gene transcription. The TTF-1 homeodomain binds to six of the seven putative binding domains observed in the 5′-flanking region of the PACAP gene. In the C6 glioma cell-line, TTF-1 activates the PACAP promoter in a dose-dependent manner. This transactivation of PACAP by TTF-1 was totally removed when the core TTF-1 binding motif at −369 was deleted. RNase protection assays showed that TTF-1 and PACAP mRNAs have daily fluctuations in the rat hypothalamus. They both were at low levels during the day and high levels during the night. Intracerebroventricular administration of an antisense TTF-1 oligodeoxynucleotide significantly decreased the PACAP mRNA level as well as TTF-1 protein content in the rat hypothalamus, suggesting that TTF-1 also regulates PACAP transcription in vivo. Moreover, the TTF-1 promoter was inhibited by molecular oscillators of CLOCK and BMAL-1. Taken together, these data suggest that TTF-1 plays an important regulatory role in the gene transcription for PACAP, which may be important for the generation of a daily rhythm of hypothalamic PACAP gene expression

    Anti-inflammatory effects of Radix Gentianae Macrophyllae (Qinjiao), Rhizoma Coptidis (Huanglian) and Citri Unshiu Pericarpium (Wenzhou migan) in animal models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>KHU14, an ethanolic extract of <it>Radix Gentianae Macrophyllae </it>(<it>Qinjiao</it>), <it>Rhizoma Coptidis </it>(<it>Huanglian</it>) and <it>Citri Unshiu Pericarpium </it>(<it>Wenzhou migan</it>) was tested for its anti-inflammatory effects.</p> <p>Methods</p> <p>Three out of 20 herbs were found to have anti-inflammatory effects. The formulation of these herbs, i.e. KHU14 was tested for croton oil-induced ear edema, carrageenan-induced paw edema, acetic acid-induced capillary permeability, cotton pellet and delayed type hypersensitivity.</p> <p>Results</p> <p>KHU14 exhibited anti-inflammatory effects in animal models of acute and chronic inflammation. The anti-inflammatory activity of KHU14 observed was comparable to that of celecoxib. KHU14 inhibited the production of NO and PGE<sub>2 </sub>in LPS/IFN-gamma-stimulated peritoneal macrophages, and reduced edema and the amount of infiltrated cells in animal models.</p> <p>Conclusion</p> <p>KHU14 exhibited anti-inflammatory effects as demonstrated in typical immunological tests for anti-inflammation <it>in vitro </it>and <it>in vivo</it>.</p

    Diagnostic Value of Nitroglycerin-Induced Headache as a Negative Predictor of Coronary Atherosclerosis

    Get PDF
    The purpose of the present study was to clarify the possible relationship between nitroglycerin (NTG)-induced headache and both vascular functional and organic atherosclerosis. The study included 96 patients with NTG-induced headache (group I: 54.7±9.5 years, 52 males) and 204 patients without headache (group II: 58.1±9.1 years, 127 males) who suffered from new-onset chest pain. Flow-mediated dilation and nitroglycerin-mediated dilation were significantly greater in group I than in group II (8.8±4.1% vs. 7.1±3.5%, p=0.001, and 23.1±7.3% vs. 17.1±11.8%, p<0.001, respectively). The carotid intima-media thickness was significantly smaller in group I than in group II (0.55±0.15 mm vs. 0.67±0.22 mm, p=0.001). Heart-carotid pulse wave velocity was significantly lower in group I than in group II (784.5±160.1 m/s vs. 979.1±215.6 m/s, p=0.003). In the multiple regression analysis, the absence of NTG-induced headache was a predictor of coronary artery disease (CAD) (odds ratio: 17.89, 95% confidence interval: 7.89-40.02, p<0.001). NTG-induced headache developed more frequently in patients with normal coronary arteries or minimal CAD than in patients with obstructive CAD. The presence of NTG-induced headache might be helpful and provide additional information in evaluating patients with chest pain syndrome
    corecore