484 research outputs found

    Investigation of the mass-transfer under mixing by the turbine mixer in the partition vessels

    Get PDF
    Наведено результати експериментальних досліджень фізичного розчинення твердої речовини в залежності від кількості вертикальних перегородок, встановлених у посудинах, виявлено вплив кількості перегородок на інтенсивність масопередачі і потужність, що споживається мішалкою, розраховано коефіцієнти масовіддачі за різних режимів роботи установки.The results of experimental researches of physical dissolution of hard matter depending on the amount of the vertical partitions set in a vessel are resulted, exposed influence of amount of partitions on intensity of mass transfer and power which is consumed by a mixer, the coefficients of mass rejection at different modes of operations of setting are expected

    Measuring velocity of sound with nuclear resonant inelastic x-ray scattering

    Full text link
    Nuclear resonant inelastic x-ray scattering is used to measure the projected partial phonon density of states of materials. A relationship is derived between the low-energy part of this frequency distribution function and the sound velocity of materials. Our derivation is valid for harmonic solids with Debye-like low-frequency dynamics. This method of sound velocity determination is applied to elemental, composite, and impurity samples which are representative of a wide variety of both crystalline and noncrystalline materials. Advantages and limitations of this method are elucidated

    Peculiarities of electronic structure and composition in ultrasound milled silicon nanowires

    Get PDF
    The combined X-ray absorption and emission spectroscopy approach was applied for the detailed electronic structure and composition studies of silicon nanoparticles produced by the ultrasound milling of heavily and lowly doped Si nanowires formed by metal-assisted wet chemical etching. The ultrasoft X-ray emission spectroscopy and synchrotron based X-ray absorption near edges structure spectroscopy techniques were utilize to study the valence and conduction bands electronic structure together with developed surface phase composition qualitative analysis. Our achieved results based on the implemented surface sensitive techniques strongly suggest that nanoparticles under studies show a significant presence of the silicon suboxides depending on the pre nature of initial Si wafers. The controlled variation of the Si nanoparticles surface composition and electronic structure, including band gap engineering, can open a new prospective for a wide range Si-based nanostructures application including the integration of such structures with organic or biological systems

    Study of in-medium ω\omega meson properties in Ap, pA and AA collisions

    Full text link
    We propose to investigate the in-medium properties of vector ω\omega mesons at the normal nuclear density in Ap(pA) collisions and at higher density in AA collisions at the ITEP accelerator facility TWAC. Using of the inverse Ap kinematics will permit us to study the ω\omega meson production in a wide momentum interval included the not yet explored range of small meson momenta relative to the projectile nuclei where the mass modification effect in nuclear matter is expected to be the strongest. Momentum dependence of the in-medium ω\omega meson width will be studied in the traditional pA kinematics. We intend to use the electromagnetic calorimeter for reconstruction of the ω\omega meson invariant mass by detecting photons from the ωπ0γ3γ\omega \to \pi^{0}\gamma \to 3\gamma decay. The model calculations and simulations with RQMD generator show feasibility of the proposed experiment. Available now intensity of the ion beams provides a possibility to collect large statistics and make decisive conclusion about the ω\omega meson properties at density of normal nuclei. At the second stage of the investigation the ω\omega meson properties will be studied in AA collisions at higher density. Interpretation of these measurements will be based on the results obtained in Ap(pA) interactions. Further investigation of the in-medium properties of light unflavored and charmed mesons can be performed at ITEP and at GSI(FAIR) where higher ion energies will be accessible in near future.Comment: 26 pages, 10 figures, 2 table

    Three dimensional quadratic algebras: Some realizations and representations

    Full text link
    Four classes of three dimensional quadratic algebras of the type \lsb Q_0 , Q_\pm \rsb == ±Q±\pm Q_\pm, \lsb Q_+ , Q_- \rsb == aQ02+bQ0+caQ_0^2 + bQ_0 + c, where (a,b,c)(a,b,c) are constants or central elements of the algebra, are constructed using a generalization of the well known two-mode bosonic realizations of su(2)su(2) and su(1,1)su(1,1). The resulting matrix representations and single variable differential operator realizations are obtained. Some remarks on the mathematical and physical relevance of such algebras are given.Comment: LaTeX2e, 23 pages, to appear in J. Phys. A: Math. Ge

    Dilute gas of ultracold two-level atoms inside a cavity; generalized Dicke model

    Full text link
    We consider a gas of ultracold two-level atoms confined in a cavity, taking into account for atomic center-of-mass motion and cavity mode variations. We use the generalized Dicke model, and analyze separately the cases of a Gaussian, and a standing wave mode shape. Owing to the interplay between external motional energies of the atoms and internal atomic and field energies, the phase-diagrams exhibit novel features not encountered in the standard Dicke model, such as the existence of first and second order phase transitions between normal and superradiant phases. Due to the quantum description of atomic motion, internal and external atomic degrees of freedom are highly correlated leading to modified normal and superradiant phases.Comment: 10 pages, 7 figure

    Wigner functions, squeezing properties and slow decoherence of atomic Schrodinger cats

    Full text link
    We consider a class of states in an ensemble of two-level atoms: a superposition of two distinct atomic coherent states, which can be regarded as atomic analogues of the states usually called Schrodinger cat states in quantum optics. According to the relation of the constituents we define polar and nonpolar cat states. The properties of these are investigated by the aid of the spherical Wigner function. We show that nonpolar cat states generally exhibit squeezing, the measure of which depends on the separation of the components of the cat, and also on the number of the constituent atoms. By solving the master equation for the polar cat state embedded in an external environment, we determine the characteristic times of decoherence, dissipation and also the characteristic time of a new parameter, the non-classicality of the state. This latter one is introduced by the help of the Wigner function, which is used also to visualize the process. The dependence of the characteristic times on the number of atoms of the cat and on the temperature of the environment shows that the decoherence of polar cat states is surprisingly slow.Comment: RevTeX, 14 pages including 8 PostScript figures. High quality versions of Figures 1, 3, 5, 7 and 8 are available at http://www.jate.u-szeged.hu/~benedict/asc_figures.html . (Submitted to Physical Review A: March 26, 1999.

    Loss of heterozygosity at 7p in Wilms' tumour development

    Get PDF
    Chromosome 7p alterations have been implicated in the development of Wilms' tumour (WT) by previous studies of tumour cytogenetics, and by our analysis of a constitutional translocation (t(1;7)(q42;p15)) in a child with WT and radial aplasia. We therefore used polymorphic microsatellite markers on 7p for a loss of heterozygosity (LOH) study, and found LOH in seven out of 77 informative WTs (9%). The common region of LOH was 7p15–7p22, which contains the region disrupted by the t(1;7) breakpoint. Four WTs with 7p LOH had other genetic changes; a germline WT1 mutation with 11p LOH, LOH at 11p, LOH at 16q, and loss of imprinting of IGF2. Analysis of three tumour-associated lesions from 7p LOH cases revealed a cystic nephroma-like area also having 7p LOH. However, a nephrogenic rest and a contralateral WT from the two other cases showed no 7p LOH. No particular clinical phenotype was associated with the WTs which showed 7p LOH. The frequency and pattern of 7p LOH demonstrated in our studies indicate the presence of a tumour suppressor gene at 7p involved in the development of Wilms' tumour. © 2000 Cancer Research Campaig

    Entanglement Sharing in the Two-Atom Tavis-Cummings Model

    Full text link
    Individual members of an ensemble of identical systems coupled to a common probe can become entangled with one another, even when they do not interact directly. We investigate how this type of multipartite entanglement is generated in the context of a system consisting of two two-level atoms resonantly coupled to a single mode of the electromagnetic field. The dynamical evolution is studied in terms of the entanglements in the different bipartite partitions of the system, as quantified by the I-tangle. We also propose a generalization of the so-called residual tangle that quantifies the inherent three-body correlations in our tripartite system. This enables us to completely characterize the phenomenon of entanglement sharing in the case of the two-atom Tavis-Cummings model, a system of both theoretical and experimental interest.Comment: 11 pages, 4 figures, submitted to PRA, v3 contains corrections to small error

    Lattice dynamics of endotaxial silicide nanowires

    Get PDF
    Self-organized silicide nanowires are considered as main building blocks of future nanoelectronics and have been intensively investigated. In nanostructures, the lattice vibrational waves (phonons) deviate drastically from those in bulk crystals, which gives rise to anomalies in thermodynamic, elastic, electronic, and magnetic properties. Hence, a thorough understanding of the physical properties of these materials requires a comprehensive investigation of the lattice dynamics as a function of the nanowire size. We performed a systematic lattice dynamics study of endotaxial FeSi2_2 nanowires, forming the metastable, surface-stabilized α\alpha-phase, which are in-plane embedded into the Si(110) surface. The average widths of the nanowires ranged from 24 to 3 nm, their lengths ranged from several μ\mum to about 100 nm. The Fe-partial phonon density of states, obtained by nuclear inelastic scattering, exhibits a broadening of the spectral features with decreasing nanowire width. The experimental data obtained along and across the nanowires unveiled a pronounced vibrational anisotropy that originates from the specific orientation of the tetragonal α\alpha-FeSi2_2 unit cell on the Si(110) surface. The results from first-principles calculations are fully consistent with the experimental data and allow for a comprehensive understanding of the lattice dynamics of endotaxial silicide nanowires.Comment: 9 pages, 7 figures, 3 table
    corecore