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A B S T R A C T

The combined X-ray absorption and emission spectroscopy approach was applied for the detailed electronic
structure and composition studies of silicon nanoparticles produced by the ultrasound milling of heavily and
lowly doped Si nanowires formed by metal-assisted wet chemical etching. The ultrasoft X-ray emission spec-
troscopy and synchrotron based X-ray absorption near edges structure spectroscopy techniques were utilize to
study the valence and conduction bands electronic structure together with developed surface phase composition
qualitative analysis. Our achieved results based on the implemented surface sensitive techniques strongly sug-
gest that nanoparticles under studies show a significant presence of the silicon suboxides depending on the pre-
nature of initial Si wafers. The controlled variation of the Si nanoparticles surface composition and electronic
structure, including band gap engineering, can open a new prospective for a wide range Si-based nanostructures
application including the integration of such structures with organic or biological systems.

X-ray emission and absorption spectroscopy are ultimate techniques
allowing not only the studies of surface chemical composition, but also
provide the extended information on the electronic structure and the
local surrounding of the given atoms [1–5] in the studied material. On
the other hand, ultrasoft X-ray techniques allow the surface sensitive
studies in nanometer range [6–8] which makes such techniques even
more attractive for direct experimental determination of nanosized
structures characteristics [9–12]. As it is well-known, Si nanostructures
play the ultimate role in the modern micro- and nanoelectronics [13]. Si
nanowires [14] formed by a simple and convenient metal assisted wet-
chemical etching technique [14,15] is one of a best example of the well-
conceived Si technology step that allows to control and combine a
number of functional properties of such nanostructures. In addition,
such nanowires can be used for the formation of Si nanoparticles with a
developed surface, which allows their implementation in medicine or
biomaterial related fields [16,17]. The application of the ultrasoft X-ray
emission (USXES) and X-ray absorption near edge structure spectro-
scopy (XANES) techniques for the precision studies of the local Si atoms
surrounding, electronic structure and composition of the powders

formed from the different doping level Si nanowires is a main focus in
present paper.

Silicon nanoparticles (SiNPs) were produced from wet-chemically
etched heavily (10−19 cm−3, HD) and lowly (10−15 cm−3, LD) n-type
phosphorous doped Si nanowires (SiNWs) followed by their fragmen-
tation in non-polar organic solvent (iso-propanol) by using an ultra-
sound bath (37 kHz, 90 W) for 4 h [18,19]. Sivakov et al. previously
have been discussed the morphology and structure difference in lowly
and heavily doped SiNWs, where the heavily doped SiNWs show more
rougher and porous or nanostructured morphology in comparison to
lowly doped SiNWs [20,21]. Finally, the solvent was evaporated using
rotary evaporator system and produced solid nanoparticles (LD-pwd
and HD-pwd) were permanently stored in flask under argon atmosphere
prior to X-ray spectroscopy experiments. SiNPs were in contact with the
environment for about 15 min (partial surface oxidation) during the
preparation of the sample for X-ray spectroscopic studies.

USXES Si L2,3 spectra provide information on the local partial
density of occupied electronic states distribution in the valence band
and were obtained with the use of laboratory RSM-500 high vacuum
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spectrometer. The obtained spectra were subjected to computer simu-
lation for the semi-quantitative estimation of surface composition
[1,2,10]. Probing depth was 10 nm [2,8,10] and energy resolution
below 0.3 eV. XANES Si L2,3 spectra give an insight into distribution of
local partial density of free electronic states in the conduction band and
were obtained at two high intensity synchrotron facilities: Kurchatov at
NRC “Kurchatov Institute” and HZB BESSY II storage rings. Ultra-high
vacuum end-stations Nano-PES and RGL-PES were used. XANES Si L2,3
probing depth was about 5 nm [7] and energy resolution below 0.1 eV
[9,22].

The obtained USXES Si L2,3 spectra are presented in the Fig. 1. The
difference between the valence band electronic state density distribu-
tions in the SiNPs under study is clearly visible. LD-pwd USXES spec-
trum is closer to the known reference of c-Si [1–3,10]. In comparison,
HD-pwd has noticeably smeared fine structure spectrum with the
clearly observed increasing in density of states (see ranges ~89 eV or
93 eV and higher). It’s a specific indication to the presence of dis-
ordering up to amorphization [23–24] of initial c-Si surface. The fitting
table (Fig. 1 inset) gives us a semi-quantitative estimation of the LD-
and HD-pwd composition at 10 nm probing depth.

The presence of a-Si phase according to fine structure and modeling
results (see a-Si reference spectrum used in [23–24]) indicates that Si
atoms closest neighbors and their coordination deviations in the inner
volume of the particles cause smearing and a general increase in the
density of states distribution. After simulation the presence of SiOx

phase (Fig. 1 inset) in HD-pwd as a more appropriative result of highly
developed surface of SiNPs (and initial wires). The SiOx reference
spectrum is a sum of SiO0.47 and SiO1.3 phases in USXES Si L2,3 spectra
[25]. The valence band top position Ev estimated in Fig. 1 and gives a
difference of 0.5 eV between HD and LD powders (100.1 eV and
99.6 eV, respectively) that can be caused by sufficiently higher content
of suboxide and interatomic disordering in HD-pwd sample.

XANES Si L2,3-edge spectra for LD- and HD-pwd are given together
with the references of c-Si and SiO2 in Fig. 2. In general, the fine
structure distribution of given spectra is in good correlation with ob-
served USXES results. Features related to c-Si in 101–102 eV and
102.5–103.5 eV ranges of HD-pwd XANES spectrum are not sharp re-
solved. This observation indicates the presence of silicon with the cer-
tain degree of disorder in HD-pwd NPs [9,10,22]. The dip at ~ 100 eV
in LD-pwd spectrum can be caused by interaction of silicon particles
with synchrotron radiation that was previously observed for SiNWs [9].
Nevertheless, 100–103.5 eV fine structure confirms the presence of

ordered Si atoms within probing depth (~5 nm) also in LD-pwd NPs
surface. The conduction band bottom position Ec values 99.9 eV and
99.8 eV for HD-pwd and LD-pwd, respectively (see Fig. 2) are com-
parable with the bulk Si conduction band values.

Spectral features higher than 104 eV correspond to the presence of
Si-oxides [4,9,22,23] in both samples. The observed fine structure is
closer to SiO2 that is reasonable with respect to the probing depth. The
trace of SiOx interlayer observed by USXES can be supported by the
wider 108 eV peak for HD-pwd and smooth rise for LD-pwd in XANES
spectra intensity after 103.5 eV [4]. Differences in relative intensities
distribution of the Si-oxide spectral part can be explained by the dif-
ferent oxidation degree that is in a good agreement with USXES results
and can be caused by more developed surface of HD-pwd NPs [20,21].

In summary, combined XANES and USXES Si L2,3 analysis of lowly
and heavily doped SiNPs allows to underline changes in band gap
width, probably caused by composition and atomic ordering changes in
studied nanoparticles. The developed surface of the nanoparticles with
significant amount of the silicon suboxides, with controlled variation of
the composition and electronic structure, including gap engineering,
has a great prospective for a wide range of applications, including the
integration with organic or biological systems.
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Fig. 2. XANES Si L2,3 synchrotron spectra of HD-pwd and LD-pwd with Ec po-
sition approximation. References spectra of c-Si and SiO2 are given (blue
curves) for comparison.
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