14 research outputs found

    Radiation and the Risk of Chronic Lymphocytic and Other Leukemias among Chornobyl Cleanup Workers

    Get PDF
    Background: Risks of most types of leukemia from exposure to acute high doses of ionizing radiation are well known, but risks associated with protracted exposures, as well as associations between radiation and chronic lymphocytic leukemia (CLL), are not clear.
 Objectives: We estimated relative risks of CLL and non-CLL from protracted exposures to low-dose ionizing radiation.
 Methods: A nested case–control study was conducted in a cohort of 110,645 Ukrainian cleanup workers of the 1986 Chornobyl nuclear power plant accident. Cases of incident leukemia diagnosed in 1986–2006 were confirmed by a panel of expert hematologists/hematopathologists. Controls were matched to cases on place of residence and year of birth. We estimated individual bone marrow radiation doses by the Realistic Analytical Dose Reconstruction with Uncertainty Estimation (RADRUE) method. We then used a conditional logistic regression model to estimate excess relative risk of leukemia per gray (ERR/Gy) of radiation dose.
 Results: We found a significant linear dose response for all leukemia [137 cases, ERR/Gy = 1.26 (95% CI: 0.03, 3.58]. There were nonsignificant positive dose responses for both CLL and non-CLL (ERR/Gy = 0.76 and 1.87, respectively). In our primary analysis excluding 20 cases with direct in-person interviews less than 2 years from start of chemotherapy with an anomalous finding of ERR/Gy = –0.47 (95% CI: less than –0.47, 1.02), the ERR/Gy for the remaining 117 cases was 2.38 (95% CI: 0.49, 5.87). For CLL, the ERR/Gy was 2.58 (95% CI: 0.02, 8.43), and for non-CLL, ERR/Gy was 2.21 (95% CI: 0.05, 7.61). Altogether, 16% of leukemia cases (18% of CLL, 15% of non-CLL) were attributed to radiation exposure.
 Conclusions: Exposure to low doses and to low dose-rates of radiation from post-Chornobyl cleanup work was associated with a significant increase in risk of leukemia, which was statistically consistent with estimates for the Japanese atomic bomb survivors. Based on the primary analysis, we conclude that CLL and non-CLL are both radiosensitive.

    Genomic characterization of chronic lymphocytic leukemia (CLL) in radiation-exposed Chornobyl cleanup workers

    Get PDF
    Background Chronic lymphocytic leukemia (CLL) was the predominant leukemia in a recent study of Chornobyl cleanup workers from Ukraine exposed to radiation (UR-CLL). Radiation risks of CLL significantly increased with increasing bone marrow radiation doses. Current analysis aimed to clarify whether the increased risks were due to radiation or to genetic mutations in the Ukrainian population. Methods A detailed characterization of the genomic landscape was performed in a unique sample of 16 UR-CLL patients and age- and sex-matched unexposed general population Ukrainian-CLL (UN-CLL) and Western-CLL (W-CLL) patients (n = 28 and 100, respectively). Results Mutations in telomere-maintenance pathway genes POT1 and ATM were more frequent in UR-CLL compared to UN-CLL and W-CLL (both p < 0.05). No significant enrichment in copy-number abnormalities at del13q14, del11q, del17p or trisomy12 was identified in UR-CLL compared to other groups. Type of work performed in the Chornobyl zone, age at exposure and at diagnosis, calendar time, and Rai stage were significant predictors of total genetic lesions (all p < 0.05). Tumor telomere length was significantly longer in UR-CLL than in UN-CLL (p = 0.009) and was associated with the POT1 mutation and survival. Conclusions No significant enrichment in copy-number abnormalities at CLL-associated genes was identified in UR-CLL compared to other groups. The novel associations between radiation exposure, telomere maintenance and CLL prognosis identified in this unique case series provide suggestive, though limited data and merit further investigation

    Review of retrospective dosimetry techniques for external ionising radiation exposures

    Get PDF
    The current focus on networking and mutual assistance in the management of radiation accidents or incidents has demonstrated the importance of a joined-up approach in physical and biological dosimetry. To this end, the European Radiation Dosimetry Working Group 10 on 'Retrospective Dosimetry' has been set up by individuals from a wide range of disciplines across Europe. Here, established and emerging dosimetry methods are reviewed, which can be used immediately and retrospectively following external ionising radiation exposure. Endpoints and assays include dicentrics, translocations, premature chromosome condensation, micronuclei, somatic mutations, gene expression, electron paramagnetic resonance, thermoluminescence, optically stimulated luminescence, neutron activation, haematology, protein biomarkers and analytical dose reconstruction. Individual characteristics of these techniques, their limitations and potential for further development are reviewed, and their usefulness in specific exposure scenarios is discussed. Whilst no single technique fulfils the criteria of an ideal dosemeter, an integrated approach using multiple techniques tailored to the exposure scenario can cover most requirements. © The Author 2010. Published by Oxford University Press. All rights reserved

    Clinical characteristics of chronic lymphocytic leukemia occurring in chornobyl cleanup workers.

    No full text
    The recently demonstrated radiation-induction of chronic lymphocytic leukemia (CLL) raises the question as to whether the amount of radiation exposure influences any of the clinical characteristics of the disease. We evaluated the relationship between bone marrow radiation doses and clinical characteristics and survival of 79 CLL cases diagnosed during 1986-2006 in a cohort of 110 645 male workers who participated in the cleanup work of the Chornobyl nuclear accident in Ukraine in 1986. All diagnoses were confirmed by an independent International Hematology Panel. Patients were followed up to the date of death or end of follow-up on 31 October 2010. The median age at diagnosis was 57 years. Median bone marrow dose was 22.6 milligray (mGy) and was not associated with time between exposure and clinical diagnosis of CLL (latent period), age, peripheral blood lymphocyte count or clinical stage of disease in univariate and multivariate analyses. Latent period was significantly shorter among those older at first exposure, smokers and those with higher frequency of visits to the doctor prior to diagnosis. A significant increase in the risk of death with increasing radiation dose was observed (p = 0.03, hazard ratio = 2.38, 95% confidence interval: 1.11,5.08 comparing those with doses ≥22 mGy to doses &lt;22 mGy). After adjustment for radiation dose, survival of CLL cases was significantly shorter among those with younger age at first exposure, higher peripheral blood lymphocyte count, more advanced clinical stage of disease and older age at diagnosis (all p &lt; 0.05). This is the first study to examine association between bone marrow radiation doses from the Chornobyl accident and clinical manifestations of the CLL in Chornobyl cleanup workers. The current study provides new evidence on the association of radiation dose and younger age at first radiation exposure at Chornobyl with shorter survival after diagnosis. Future studies are necessary with more cases in order to improve the statistical power of these analyses and to determine their significance. Copyright © 2016 John Wiley &amp; Sons, Ltd

    Risk of hematological malignancies among Chernobyl liquidators

    No full text
    International audienceA case-control study of hematological malignancies was conducted among Chernobyl liquidators (accident recovery workers) from Belarus, Russia and Baltic countries to assess the effect of low- to medium-dose protracted radiation exposures on the relative risk of these diseases. The study was nested within cohorts of liquidators who had worked around the Chernobyl plant in 1986-1987. A total of 117 cases [69 leukemia, 34 non-Hodgkin lymphoma (NHL) and 14 other malignancies of lymphoid and hematopoietic tissue] and 481 matched controls were included in the study. Individual dose to the bone marrow and uncertainties were estimated for each subject. The main analyses were restricted to 70 cases (40 leukemia, 20 NHL and 10 other) and their 287 matched controls with reliable information on work in the Chernobyl area. Most subjects received very low doses (median 13 mGy). For all diagnoses combined, a significantly elevated OR was seen at doses of 200 mGy and above. The excess relative risk (ERR) per 100 mGy was 0.60 [90% confidence interval (CI) _0.02, 2.35]. The corresponding estimate for leukemia excluding chronic lymphoid leukemia (CLL) was 0.50 (90% CI _0.38, 5.7). It is slightly higher than but statistically compatible with those estimated from A-bomb survivors and recent low-doserate studies. Although sensitivity analyses showed generally similar results, we cannot rule out the possibility that biases and uncertainties could have led to over- or underestimation of the risk in this study
    corecore