39 research outputs found

    Structure and Properties of Twin Boundaries in Ni-Mn-Ga Alloys

    Get PDF
    Ni-Mn-Ga alloys close to the stoichiometric composition Ni2MnGa belong to the quite new family of ferromagnetic shape memory alloys. These alloys are characterized by the magnetic field induced strain (MFIS) based on the comparably easy motion of twin boundaries under a magnetic field. They are mostly chosen as a potential candidate for practical application especially promising for actuators and sensors because they are showing the largest MFIS so far. Depending on the chemical composition and heat treatment, at least three martensitic structures can be distinguished in the Ni-Mn-Ga system. However, the effect mentioned above only exists in two modulated structures. Since for the intended application of MFIS in technology polycrystalline materials seem to be more appropriate in contrast to single crystals, the specific polycrystalline aspects are considered. Factors important for decreasing the twinning stress and increasing the twinning strain of polycrystalline Ni-Mn-Ga alloys are texturing, adjusting the structure by annealing and training by thermomechanical treatments. To achieve pronounced MFIS in polycrystals, fabrication processes are needed to produce specific strong textures. The material texturing has been obtained by directional solidification and plastic deformation by hot rolling and hot extrusion as well as high pressure torsion (HPT). To examine the texture of coarse-grained Ni-Mn-Ga alloys (due to a solidification process or dynamic recrystallization), diffraction of synchrotron radiation and neutrons was applied. The texture results show that the texture of Ni-Mn-Ga subjected to directional solidification, hot rolling and hot extrusion is a fibre or weak biaxial texture. However, local synchrotron measurements reveal that the global fibre texture of the hot extruded sample is a ”cyclic” fibre texture, i.e. it is composed of components related to the radial direction rotating around the extrusion axis. This allows finding regions with a strong texture component. The texture after HPT is characterized by a strong cube with the cube favourably oriented. The initial microstructure of the Ni-Mn-Ga alloys is a typical self-accommodated microstructure of martensite. High resolution EBSD mappings show macro, micro twins and two types of microstructure. The twin plane is determined to be {110). In a typical martensitic transformation the high-temperature phase has a higher crystallographic symmetry than the low-temperature phase. Consequently, austenite may transform to several martensitic variants, the number of which depends on the change of symmetry during transformation. Generally, in a cubic-to-tetragonal transformation (5M case) three variants can form with the c-axis oriented close to the three main cubic axes of austenite. However, close examination of the high resolution EBSD mapping reveals that more than just three orientations, as expected from the Bain model, exist in Ni50Mn29Ga21. Each of three Bain variants may be split in some twin relations in different regions of the sample which differ from each other by about few degrees creating a much higher number of variants. The training process, as the last step in the preparation procedure of Ni-Mn-Ga alloys, consists of multi-axis compression finally leading to a single-variant state. Compression of polycrystalline samples leads to motion of those twin boundaries changing the volume fraction of particular martensitic variants in such a way that the shortest axis (c-axis) becomes preferentially aligned parallel to the compression axis. It allows reducing the twinning stress and maximizing the twinning strain. To understand the training process in more detail, the interaction of the twin variants with the neighbourhood of parent austenite grains was investigated

    The Phase Transformations Induced by High-Pressure Torsion in Ti–Nb-Based Alloys

    Get PDF
    The study of the fundamentals of the α → ω and β → ω phase transformations induced by high-pressure torsion (HPT) in Ti–Nb-based alloys is presented in the current work. Prior to HPT, three alloys with 5, 10, and 20 wt% of Nb were annealed in the temperature range of 700–540°C in order to obtain the (α + β)-phase state with a different amount of the β-phase. The samples were annealed for a long time in order to reach equilibrium Nb content in the α-solid solution. Scanning electron microscope (SEM), transmission electron microscopy, and X-ray diffraction techniques were used for the characterization of the microstructure evolution and phase transformations. HPT results in a strong grain refinement of the microstructure, a partial transformation of the α-phase into the ω-phase, and a complete β → ω phase transformation. Two kinds of the ω-phase with different chemical compositions were observed after HPT. The first one was formed from the β-phase, enriched in Nb, and the second one from the almost Nb-pure α-phase. It was found that the α → ω phase transformation depends on the Nb content in the initial α-Ti phase. The less the amount of Nb in the α-phase, the more the amount of the α-phase is transformed into the ω-phase

    Structural and Mechanical Properties of Ti-Co Alloys Treated by High Pressure Torsion

    Get PDF
    The microstructure and properties of titanium-based alloys can be tailored using severe plastic deformation. The structure and microhardness of Ti–4 wt.% Co alloy have been studied after preliminary annealing and following high pressure torsion (HPT). The Ti–4 wt.% Co alloy has been annealed at 400, 500, and 600 °C, i.e., below the temperature of eutectoid transformation in the Ti–4 wt.% Co system. The amount of Co dissolved in α-Ti increased with increasing annealing temperature. HPT led to the transformation of α-Ti in ω-Ti. After HPT, the amount of ω-phase in the sample annealed at 400 °C was about 80­85%, i.e., higher than in pure titanium (about 40%). However, with increasing temperature of pre-annealing, the portion of ω-phase decreased (60–65% at 500 °C and about 5% at 600 °C). The microhardness of all investigated samples increased with increasing temperature of pre-annealing

    Texture-Governed Cell Response to Severely Deformed Titanium

    Get PDF
    The phenomenon of superior biological behavior , r it observed in titanium processed by an unconventional severe plastic deformation method, that is, hydrostatic extrusion, has been described within the present study. In doing so, specimens varying significantly in the crystallographic orientation of grains, yet exhibiting comparable grain refinement, were meticulously investigated. The aim was to find the clear origin of enhanced biocompatibility of titanium-based materials, having microstructures scaled down to the submicron range. Texture, microstructure, and surface characteristics, that is, wettability, roughness, and chemical composition, were examined as well as protein adsorption tests and cell response studies were carried out. It has been concluded that, irrespective of surface properties and mean grain size, the (10 (1) over bar0) crystallographic plane favors endothelial cell attachment on the surface of the severely deformed titanium. Interestingly, an enhanced albumin, fibronectin, and serum adsorption as well as dearly directional growth of the cells with preferentially oriented cell nuclei have been observed on the surfaces having (0001) planes exposed predominantly. Overall, the biological response of titanium fabricated by severe plastic deformation techniques is derived from the synergistic effect of surface irregularities, being the effect of refined microstructures, surface chemistry, and crystallographic orientation of grains rather than grain refinement itself

    Structure and Properties of Twin Boundaries in Ni-Mn-Ga Alloys

    Get PDF
    Ni-Mn-Ga alloys close to the stoichiometric composition Ni2MnGa belong to the quite new family of ferromagnetic shape memory alloys. These alloys are characterized by the magnetic field induced strain (MFIS) based on the comparably easy motion of twin boundaries under a magnetic field. They are mostly chosen as a potential candidate for practical application especially promising for actuators and sensors because they are showing the largest MFIS so far. Depending on the chemical composition and heat treatment, at least three martensitic structures can be distinguished in the Ni-Mn-Ga system. However, the effect mentioned above only exists in two modulated structures. Since for the intended application of MFIS in technology polycrystalline materials seem to be more appropriate in contrast to single crystals, the specific polycrystalline aspects are considered. Factors important for decreasing the twinning stress and increasing the twinning strain of polycrystalline Ni-Mn-Ga alloys are texturing, adjusting the structure by annealing and training by thermomechanical treatments. To achieve pronounced MFIS in polycrystals, fabrication processes are needed to produce specific strong textures. The material texturing has been obtained by directional solidification and plastic deformation by hot rolling and hot extrusion as well as high pressure torsion (HPT). To examine the texture of coarse-grained Ni-Mn-Ga alloys (due to a solidification process or dynamic recrystallization), diffraction of synchrotron radiation and neutrons was applied. The texture results show that the texture of Ni-Mn-Ga subjected to directional solidification, hot rolling and hot extrusion is a fibre or weak biaxial texture. However, local synchrotron measurements reveal that the global fibre texture of the hot extruded sample is a ”cyclic” fibre texture, i.e. it is composed of components related to the radial direction rotating around the extrusion axis. This allows finding regions with a strong texture component. The texture after HPT is characterized by a strong cube with the cube favourably oriented. The initial microstructure of the Ni-Mn-Ga alloys is a typical self-accommodated microstructure of martensite. High resolution EBSD mappings show macro, micro twins and two types of microstructure. The twin plane is determined to be {110). In a typical martensitic transformation the high-temperature phase has a higher crystallographic symmetry than the low-temperature phase. Consequently, austenite may transform to several martensitic variants, the number of which depends on the change of symmetry during transformation. Generally, in a cubic-to-tetragonal transformation (5M case) three variants can form with the c-axis oriented close to the three main cubic axes of austenite. However, close examination of the high resolution EBSD mapping reveals that more than just three orientations, as expected from the Bain model, exist in Ni50Mn29Ga21. Each of three Bain variants may be split in some twin relations in different regions of the sample which differ from each other by about few degrees creating a much higher number of variants. The training process, as the last step in the preparation procedure of Ni-Mn-Ga alloys, consists of multi-axis compression finally leading to a single-variant state. Compression of polycrystalline samples leads to motion of those twin boundaries changing the volume fraction of particular martensitic variants in such a way that the shortest axis (c-axis) becomes preferentially aligned parallel to the compression axis. It allows reducing the twinning stress and maximizing the twinning strain. To understand the training process in more detail, the interaction of the twin variants with the neighbourhood of parent austenite grains was investigated

    Structure and Properties of Twin Boundaries in Ni-Mn-Ga Alloys

    No full text
    Ni-Mn-Ga alloys close to the stoichiometric composition Ni2MnGa belong to the quite new family of ferromagnetic shape memory alloys. These alloys are characterized by the magnetic field induced strain (MFIS) based on the comparably easy motion of twin boundaries under a magnetic field. They are mostly chosen as a potential candidate for practical application especially promising for actuators and sensors because they are showing the largest MFIS so far. Depending on the chemical composition and heat treatment, at least three martensitic structures can be distinguished in the Ni-Mn-Ga system. However, the effect mentioned above only exists in two modulated structures. Since for the intended application of MFIS in technology polycrystalline materials seem to be more appropriate in contrast to single crystals, the specific polycrystalline aspects are considered. Factors important for decreasing the twinning stress and increasing the twinning strain of polycrystalline Ni-Mn-Ga alloys are texturing, adjusting the structure by annealing and training by thermomechanical treatments. To achieve pronounced MFIS in polycrystals, fabrication processes are needed to produce specific strong textures. The material texturing has been obtained by directional solidification and plastic deformation by hot rolling and hot extrusion as well as high pressure torsion (HPT). To examine the texture of coarse-grained Ni-Mn-Ga alloys (due to a solidification process or dynamic recrystallization), diffraction of synchrotron radiation and neutrons was applied. The texture results show that the texture of Ni-Mn-Ga subjected to directional solidification, hot rolling and hot extrusion is a fibre or weak biaxial texture. However, local synchrotron measurements reveal that the global fibre texture of the hot extruded sample is a ”cyclic” fibre texture, i.e. it is composed of components related to the radial direction rotating around the extrusion axis. This allows finding regions with a strong texture component. The texture after HPT is characterized by a strong cube with the cube favourably oriented. The initial microstructure of the Ni-Mn-Ga alloys is a typical self-accommodated microstructure of martensite. High resolution EBSD mappings show macro, micro twins and two types of microstructure. The twin plane is determined to be {110). In a typical martensitic transformation the high-temperature phase has a higher crystallographic symmetry than the low-temperature phase. Consequently, austenite may transform to several martensitic variants, the number of which depends on the change of symmetry during transformation. Generally, in a cubic-to-tetragonal transformation (5M case) three variants can form with the c-axis oriented close to the three main cubic axes of austenite. However, close examination of the high resolution EBSD mapping reveals that more than just three orientations, as expected from the Bain model, exist in Ni50Mn29Ga21. Each of three Bain variants may be split in some twin relations in different regions of the sample which differ from each other by about few degrees creating a much higher number of variants. The training process, as the last step in the preparation procedure of Ni-Mn-Ga alloys, consists of multi-axis compression finally leading to a single-variant state. Compression of polycrystalline samples leads to motion of those twin boundaries changing the volume fraction of particular martensitic variants in such a way that the shortest axis (c-axis) becomes preferentially aligned parallel to the compression axis. It allows reducing the twinning stress and maximizing the twinning strain. To understand the training process in more detail, the interaction of the twin variants with the neighbourhood of parent austenite grains was investigated

    Influence of Re on the Plastic Hardening Mechanism of Alloyed Copper

    No full text
    In this paper, we investigated the effect of adding rhenium to Cu-Ni-Si alloys on the mechanical properties and electrical conductivity of these alloys. The scientific objective was to analyze the effect of Re addition on the microstructure of heat- and cold-treated CuNi2Si1 alloys. Transmission electron microscopy (TEM, STEM) and scanning electron microscopy (EDS, WDS) were used to examine the microstructure. Orientation mapping was also performed using a scanning electron microscope (SEM) equipped with a backscattered electron diffraction (EBSD) system. In addition, hardness at low load and conductivity were tested. The obtained results showed that modifying the chemical composition of Re (0.6 wt%) inhibits the recrystallization process in the CuNi2Si1 alloy, which was cold deformed and then subjected to recrystallization annealing

    Thermoplastic hardened Cu-Ni-Si-Ag alloy

    No full text
    The paper aims to investigate the influence of silver addition on the microstructure of CuNi2Si1 alloys. The investigated copper alloy was cast and then supersaturated, plastically deformed on the Gleeble 3800 simulator and finally aged. Structural changes were examined using optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Orientation mapping was completed with FEI Quanta 3D field emission gun scanning electron microscope (SEM) equipped with TSL electron backscattered diffraction (EBSD) system. The effect of structural and microstructural changes on hardness and conductivity was also investigated. Based on the mechanical tests it was found that the mechanical properties and conductivity are improved due to heat and plastic treatment. It was also found that the precipitation hardening raises the hardness to the level of 40% whilst an increase in conductivity by 20% is observed

    Interfacial Phenomena between Liquid Ga-Based Alloys and Ni Substrate

    No full text
    In this study, wetting tests for Ni substrate with eutectic Ga-Sn-Zn are carried out using the sessile drop method. The experiments are performed for 1, 10 and 30 days of contact, at temperatures of 100C, 150C and 250C. Selected liquid/substrate couples are cross-sectioned and subjected to scanning electron microscopy with energy dispersive spectroscopy for interfacial microstructure investigation. Phase identification is carried out using synchrotron x-ray diffraction. The growth of the intermetallic Ni-Ga phase layer is studied at the liquid/Ni substrate interface, and the kinetics of the formation and growth of this layer are determined
    corecore