19 research outputs found

    Trypanosoma cruzi Targets Akt in Host Cells as an Intracellular Antiapoptotic Strategy

    No full text

    Dynamics of magnetic fluid drop's shape in rotating and stationary magnetic fields

    No full text
    Abstract A drop of magnetic fluid was experimentally studied in a rotating magnetic field H r with the additional influence of a stationary magnetic field H s : The conditions of a drop break were studied with different values and directions of intensities between rotating and static magnetic fields. The results of the experiment were theoretically well grounded.

    Neurotrophin Receptor TrkC Is an Entry Receptor for Trypanosoma cruzi in Neural, Glial, and Epithelial Cells ▿

    No full text
    Trypanosoma cruzi, the agent of Chagas' disease, infects a variety of mammalian cells in a process that includes multiple cycles of intracellular division and differentiation starting with host receptor recognition by a parasite ligand(s). Earlier work in our laboratory showed that the neurotrophin-3 (NT-3) receptor TrkC is activated by T. cruzi surface trans-sialidase, also known as parasite-derived neurotrophic factor (PDNF). However, it has remained unclear whether TrkC is used by T. cruzi to enter host cells. Here, we show that a neuronal cell line (PC12-NNR5) relatively resistant to T. cruzi became highly susceptible to infection when overexpressing human TrkC but not human TrkB. Furthermore, trkC transfection conferred an ∼3.0-fold intracellular growth advantage. Sialylation-deficient Chinese hamster ovarian (CHO) epithelial cell lines Lec1 and Lec2 also became much more permissive to T. cruzi after transfection with the trkC gene. Additionally, NT-3 specifically blocked T. cruzi infection of the TrkC-NNR5 transfectants and of naturally permissive TrkC-bearing Schwann cells and astrocytes, as did recombinant PDNF. Two specific inhibitors of Trk autophosphorylation (K252a and AG879) and inhibitors of Trk-induced MAPK/Erk (U0126) and Akt kinase (LY294002) signaling, but not an inhibitor of insulin-like growth factor 1 receptor, abrogated TrkC-mediated cell invasion. Antibody to TrkC blocked T. cruzi infection of the TrkC-NNR5 transfectants and of cells that naturally express TrkC. The TrkC antibody also significantly and specifically reduced cutaneous infection in a mouse model of acute Chagas' disease. TrkC is ubiquitously expressed in the peripheral and central nervous systems, and in nonneural cells infected by T. cruzi, including cardiac and gastrointestinal muscle cells. Thus, TrkC is implicated as a functional PDNF receptor in cell entry, independently of sialic acid recognition, mediating broad T. cruzi infection both in vitro and in vivo

    Toll-like receptor-2 and interleukin-6 mediate cardiomyocyte protection from apoptosis during Trypanosoma cruzi murine infection

    Get PDF
    Local innate immunity plays a key role in initiating and coordinating homeostatic and defense responses in the heart. We have previously reported that the cardiotropic parasite Trypanosoma cruzi, the etiological agent of Chagas disease, protects cardiomyocytes against growth factor deprivation-induced apoptosis. In this study, we investigated cardiomyocyte innate immune response to T. cruzi infection and its role in cellular protection from apoptosis. We found that Toll-like receptor (TLR) 2-expressing cellswere strongly increased by the parasite in BALB/c neonatal mouse cardiomyocyte cultures. Using a dominant-negative system, we showed that TLR2 mediated cardiomyocyte survival and the secretion of interleukin (IL) 6, which acted as an essential antiapoptotic factor. Moreover, IL6 released by infected cells, as well as the recombinant bioactive cytokine, induced the phosphorylation of the signal transducers and activators of transcription-3 (STAT3) in cultured cardiomyocytes. In accord with the in vitro results, during the acute phase of the infection, TLR2 expression increased 2.9-fold and the antiapoptotic factor Bcl-2 increased 4.5-fold in the cardiac tissue. We have clearly shown a cross-talk between the intrinsic innate response of cardiomyocytes and the pro-survival effect evoked by the parasite. © Springer-Verlag 2011.Fil: Ponce, Nicolás Eric. Universidad Nacional de Cordoba. Facultad de Cs.quimicas. Departamento de Bioquimica Clinica. Cat.de Inmunologia; ArgentinaFil: Cano, Roxana Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Carrera Silva, Eugenio Antonio. University of Yale; Estados UnidosFil: Lima, Ana Paula. Universidade Federal do Rio de Janeiro; BrasilFil: Gea, Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Aoki, Maria del Pilar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentin

    DNA Sequences Encoding CD4(+) and CD8(+) T-Cell Epitopes Are Important for Efficient Protective Immunity Induced by DNA Vaccination with a Trypanosoma cruzi Gene

    Get PDF
    Immunization of BALB/c mice with a plasmid containing the gene for Trypanosoma cruzi trans-sialidase (TS) induced antibodies that inhibited TS enzymatic activity, CD4(+) Th1 and CD8(+) Tc1 cells, and protective immunity against infection. We used this model to obtain basic information on the requirement of CD4 or CD8 or B-cell epitopes for an effective DNA-induced immunity against T. cruzi infection. For that purpose, mice were immunized with plasmids containing DNA sequences encoding (i) the entire TS protein, (ii) the TS enzymatic domain, (iii) the TS CD4(+) T-cell epitopes, (iv) the TS CD8(+) T-cell epitope, or (v) TS CD4(+) and CD8(+) T-cell epitopes. Plasmids expressing the entire TS or its enzymatic domain elicited similar levels of TS-inhibitory antibodies, γ interferon (IFN-γ)-producing T cells, and protective immunity against infection. Although the plasmid expressing TS CD4 epitopes was immunogenic, its protective efficacy against experimental infection was limited. The plasmid expressing the CD8 epitope was poorly immunogenic and provided little protective immunity. The reason for the limited priming of CD8(+) T cells was due to a requirement for CD4(+) T cells. To circumvent this problem, a plasmid expressing both CD4(+) and CD8(+) T-cell epitopes was produced. This plasmid generated levels of IFN-γ-producing T cells and protective immunity comparable to that of the plasmid expressing the entire catalytic domain of TS. Our observations suggest that plasmids expressing epitopes recognized by CD4(+) and CD8(+) T cells may have a better protective potential against infection with T. cruzi

    Epitope Mapping of trans-Sialidase from Trypanosoma cruzi Reveals the Presence of Several Cross-Reactive Determinants

    No full text
    Trypanosoma cruzi, the agent of Chagas' disease, expresses trans-sialidase, a unique enzyme activity that enables the parasite to invade host cells by transferring sialyl residues from host glyconjugates to the parasite's surface acceptor molecules. The enzyme is also shed into the surrounding environment, causing apoptosis in cells from the immune system. During infections, an antibody response against the catalytic region of the trans-sialidase that is coincident with the control of the parasitemia and survival of the host is observed. This low-titer humoral response is characterized by its persistence for many years in benznidazole-treated patients. Here we analyzed the antigenic structure of the molecule by phage-displayed peptide combinatorial libraries and SPOT synthesis. Several epitopes were defined and located on the three-dimensional model of the enzyme. Unexpectedly, cross-reaction was found among several epitopes distributed in different locations displaying nonconsensus sequences. This finding was confirmed by the reactivity of three monoclonal antibodies able to recognize non-sequence-related peptides that together constitute the surface surrounding the catalytic site of the enzyme. The presence of cross-reacting epitopes within a single molecule suggests a mechanism developed to avoid a strong humoral response by displaying an undefined target to the immune system
    corecore