13 research outputs found

    Genotypic distribution of multidrug-resistant and extensively drug-resistant tuberculosis in northern Thailand

    No full text
    Risara Jaksuwan,1 Prasit Tharavichikul,2 Jayanton Patumanond,3 Charoen Chuchottaworn,4 Sakarin Chanwong,5 Saijai Smithtikarn,6 Jongkolnee Settakorn7 1Clinical Epidemiology Unit, 2Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 3Division of Clinical Epidemiology, Faculty of Medicine, Thammasat University, Pathum Thani, 4Division of Respiratory Medicine, Chest Disease Institute, Nonthaburi, 5Office of Disease Prevention and Control Region 10, Chiang Mai, 6Bureau of Tuberculosis, Department of Disease Control, Ministry of Public Health, Bangkok, 7Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand Background: Multidrug/extensively drug-resistant tuberculosis (M/XDR-TB) is a major public health problem, and early detection is important for preventing its spread. This study aimed to demonstrate the distribution of genetic site mutation associated with drug resistance in M/XDR-TB in the northern Thai population. Methods: Thirty-four clinical MTB isolates from M/XDR-TB patients in the upper northern region of Thailand, who had been identified for drug susceptibility using the indirect agar proportion method from 2005 to 2012, were examined for genetic site mutations of katG, inhA, and ahpC for isoniazid (INH) drug resistance and rpoB for rifampicin (RIF) drug resistance. The variables included the baseline characteristics of the resistant gene, genetic site mutations, and drug susceptibility test results. Results: All 34 isolates resisted both INH and RIF. Thirty-two isolates (94.1%) showed a mutation of at least 1 codon for katG, inhA, and ahpC genes. Twenty-eight isolates (82.4%) had a mutation of at least 1 codon of rpoB gene. The katG, inhA, ahpC, and rpoB mutations were detected in 20 (58.7%), 27 (79.4%), 13 (38.2%), and 28 (82.3%) of 34 isolates. The 3 most common mutation codons were katG 315 (11/34, 35.3%), inhA 14 (11/34, 32.4%), and inhA 114 (11/34, 32.4%). For this population, the best genetic mutation test panels for INH resistance included 8 codons (katG 310, katG 340, katG 343, inhA 14, inhA 84, inhA 86, inhA 114, and ahpC 75), and for RIF resistance included 6 codons (rpoB 445, rpoB 450, rpoB 464, rpoB 490, rpoB 507, and rpoB 508) with a sensitivity of 94.1% and 82.4%, respectively. Conclusion: The genetic mutation sites for drug resistance in M/XDR-TB are quite variable. The distribution of these mutations in a certain population must be studied before developing the specific mutation test panels for each area. The results of this study can be applied for further molecular M/XDR-TB diagnosis in the upper northern region of Thailand. Keywords: tuberculosis, drug resistance, MDR-TB, XDR-TB, genotype, mutatio

    Temporary Vision Loss After Spinal Anesthesia

    No full text
    Perioperative visual loss is a rare complication mostly associated with cardiac, spine, and head and neck surgery that could severely affect quality of life. We report a case of temporary visual loss without any other subjective symptom after spinal anesthesia

    Patient-based transcriptome-wide analysis identify interferon and ubiquination pathways as potential predictors of influenza a disease severity

    Get PDF
    Background The influenza A virus is an RNA virus that is responsible for seasonal epidemics worldwide with up to five million cases of severe illness and 500,000 deaths annually according to the World Health Organization estimates. The factors associated with severe diseases are not well defined, but more severe disease is more often seen among persons aged >65 years, infants, pregnant women, and individuals of any age with underlying health conditions. Methodology/Principal Findings Using gene expression microarrays, the transcriptomic profiles of influenza-infected patients with severe (N = 11), moderate (N = 40) and mild (N = 83) symptoms were compared with the febrile patients of unknown etiology (N = 73). We found that influenza-infected patients, regardless of their clinical outcomes, had a stronger induction of antiviral and cytokine responses and a stronger attenuation of NK and T cell responses in comparison with those with unknown etiology. More importantly, we found that both interferon and ubiquitination signaling were strongly attenuated in patients with the most severe outcomes in comparison with those with moderate and mild outcomes, suggesting the protective roles of these pathways in disease pathogenesis. Conclusion/Significances The attenuation of interferon and ubiquitination pathways may associate with the clinical outcomes of influenza patients
    corecore