60 research outputs found

    Rotation-Vibration Spectra of Linear Acetylene for Characterising Astrophysical Atmospheres

    Get PDF
    This thesis presents research carried out as part of the ExoMol project, towards calculating theoretical spectra for the main isotopologue of acetylene, C2H2, for use in characterising hot exoplanet or cool stellar atmospheres. A large component of this work was in the development of numerical methods for treating linear polyatomic molecules such that these calculations could be carried out in an efficient and feasible way; ro-vibrational calculations of linear molecules are very non-trivial and require a unique treatment in order to avoid singularities in the Hamiltonian. A novel approach was employed in variational nuclear motion programme \Trove, which involves the use of a finite Dnh{\mathcal D}_{n{\rm h}} symmetry group and classification of ro-vibrational states using the vibrational angular momentum operator, Lz^\hat{L_{z}}. This has been used in nuclear-motion calculations to compute an \textit{ab initio} linelist of C2H2 covering 13.9~million transitions between 2.7~million states, up to a rotational excitation of J=58J=58. In order to facilitate an accurate calculated spectra, available experimental data of C2H2 were collated and analysed to obtain an accurate set of 11,213 empirical energy levels using the \Marvel\ procedure. As demonstrated, these can be used to produce a high-accuracy potential energy surface and subsequent semi-empirical model for the ro-vibrational energies and intensities of acetylene, which can be computed up to high ro-vibrational excitations. Calculations using this semi-empirical model are in progress for an accurate high-temperature linelist, expected to be valid up to 1000--1200~K. This will be published in due course and will be appropriate for characterising exoplanet and cool stellar atmospheres; these ongoing calculations are discussed

    Aluminium oxide in the atmosphere of hot Jupiter WASP-43b

    Get PDF
    Funding: European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement 776403, and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 758892, ExoAI.We have conducted a re-analysis of publicly available Hubble Space Telescope Wide Field Camera 3 (HST WFC3) transmission data for the hot-Jupiter exoplanet WASP-43b, using the Bayesian retrieval package Tau-REx. We report evidence of AlO in transmission to a high level of statistical significance (>5σ in comparison to a flat model, and 3.4σ in comparison to a model with H2O only). We find no evidence of the presence of CO, CO2, or CH4 based on the available HST WFC3 data or on Spitzer IRAC data. We demonstrate that AlO is the molecule that fits the data to the highest level of confidence out of all molecules for which high-temperature opacity data currently exists in the infrared region covered by the HST WFC3 instrument, and that the subsequent inclusion of Spitzer IRAC data points in our retrieval further supports the presence of AlO. H2O is the only other molecule we find to be statistically significant in this region. AlO is not expected from the equilibrium chemistry at the temperatures and pressures of the atmospheric layer that is being probed by the observed data. Its presence therefore implies direct evidence of some disequilibrium processes with links to atmospheric dynamics. Implications for future study using instruments such as the James Webb Space Telescope are discussed, along with future opacity needs. Comparisons are made with previous studies into WASP-43b.PostprintPeer reviewe

    Modelling reflected polarised light from close-in giant exoplanet WASP-96b using PolHEx (Polarisation of Hot Exoplanets)

    Full text link
    We present the Polarisation of Hot Exoplanets (PolHEx) code for modelling the total flux (F) and degree of linear polarisation (P) of light spectra reflected by close-in, tidally locked exoplanets. We use the output from a global climate model (GCM) combined with a kinetic cloud model of hot Jupiter WASP-96b as a base to investigate effects of atmospheric longitudinal-latitudinal inhomogeneities on these spectra. We model F and P-spectra as functions of wavelength and planet orbital phase for various model atmospheres. We find different materials and sizes of cloud particles to impact the reflected flux F, and particularly the linear polarisation state P. A range of materials are used to form inhomogeneous mixed-material cloud particles (Al2O3, Fe2O3, Fe2SiO4, FeO, Fe, Mg2SiO4, MgO, MgSiO3, SiO2, SiO, TiO2), with Fe2O3, Fe, and FeO the most strongly absorbing species. The cloud particles near the relatively cool morning terminator are expected to have smaller average sizes and a narrower size distribution than those near the warmer evening terminator, which leads to different reflected spectra at the respective orbital phases .We also find differences in the spectra of F and P as functions of orbital phase for irregularly or spherically shaped cloud particles. This work highlights the importance of including polarisation in models and future observations of the reflection spectra of exoplanets.Comment: Accepted for publication in MNRA

    Modelling reflected polarized light from close-in giant exoplanet WASP-96b using PolHEx (Polarisation of hot exoplanets)

    Get PDF
    Funding: This project has received funding from STFC, under project number ST/V000861/1. ChH further acknowledges funding from the European Union H2020-MSCA-ITN-2019 under grant agreement number 860470 (CHAMELEON). DS acknowledge financial support from the Austrian Academy of Sciences.We present the Polarisation of Hot Exoplanets (PolHEx) code for modelling the total flux (F) and degree of linear polarisation (P) of light spectra reflected by close-in, tidally locked exoplanets. We use the output from a global climate model (GCM) combined with a kinetic cloud model of hot Jupiter WASP-96b as a base to investigate effects of atmospheric longitudinal-latitudinal inhomogeneities on these spectra. We model F and P-spectra as functions of wavelength and planet orbital phase for various model atmospheres. We find different materials and sizes of cloud particles to impact the reflected flux F, and particularly the linear polarisation state P. A range of materials are used to form inhomogeneous mixed-material cloud particles (Al2O3, Fe2O3, Fe2SiO4, FeO, Fe, Mg2SiO4, MgO, MgSiO3, SiO2, SiO, TiO2), with Fe2O3, Fe, and FeO the most strongly absorbing species. The cloud particles near the relatively cool morning terminator are expected to have smaller average sizes and a narrower size distribution than those near the warmer evening terminator, which leads to different reflected spectra at the respective orbital phases. We also find differences in the spectra of F and P as functions of orbital phase for irregularly or spherically shaped cloud particles. This work highlights the importance of including polarisation in models and future observations of the reflection spectra of exoplanets.Publisher PDFPeer reviewe

    MARVEL analysis of the measured high-resolution rovibrational spectra of C2H2

    Get PDF
    Rotation-vibration energy levels are determined for the electronic ground state of the acetylene molecule, 12^{12}C2_2H2_2, using the Measured Active Rotational-Vibrational Energy Levels (MARVEL) technique. 37,813 measured transitions from 61 publications are considered. The distinct components of the spectroscopic network linking ortho and para states are considered separately. The 20,717 ortho and 17,096 para transitions measured experimentally are used to determine 6013 ortho and 5200 para energy levels. The MARVEL results are compared with alternative compilations based on the use of effective Hamiltonians.Comment: 55 pages, 8 figures, JQSRT, 201

    Original research by Young twinkle students (ORBYTS): when can students start performing original research?

    Get PDF
    Involving students in state-of-the-art research from an early age eliminates the idea that science is only for the scientists and empowers young people to explore STEM (Science, Technology, Engineering and Maths) subjects. It is also a great opportunity to dispel harmful stereotypes about who is suitable for STEM careers, while leaving students feeling engaged in modern science and the scientific method. As part of the Twinkle Space Mission's educational programme, EduTwinkle, students between the ages of 15 and 18 have been performing original research associated with the exploration of space since January 2016. The student groups have each been led by junior researchers—PhD and post-doctoral scientists—who themselves benefit substantially from the opportunity to supervise and manage a research project. This research aims to meet a standard for publication in peer-reviewed journals. At present the research of two ORBYTS teams have been published, one in the Astrophysical Journal Supplement Series and another in JQSRT; we expect more papers to follow. Here we outline the necessary steps for a productive scientific collaboration with school children, generalising from the successes and downfalls of the pilot ORBYTS projects

    Marvel analysis of the measured high-resolution rovibrational spectra of H2S

    Get PDF
    44325 measured and assigned transitions of H232_2^{32}S, the parent isotopologue of the hydrogen sulfide molecule, are collated from 33 publications into a single database and reviewed critically. Based on this information, rotation-vibration energy levels are determined for the ground electronic state using the Measured Active Rotational-Vibrational Energy Levels (MARVEL) technique. The ortho and para principal components of the measured spectroscopic network of H232_2^{32}S are considered separately. The verified set of 25293 ortho- and 18778 para- H232_2^{32}S transitions determine 3969 ortho and 3467 para energy levels. The Marvel results are compared with alternative data compilations, including a theoretical variational linelist.Comment: 39 pages, 3 figures, JQSRT, 201
    • …
    corecore