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Abstract

This thesis presents research carried out as part of the ExoMol project, to-

wards calculating theoretical spectra for the main isotopologue of acetylene,

12C2H2, for use in characterising hot exoplanet or cool stellar atmospheres. A

large component of this work was in the development of numerical methods

for treating linear polyatomic molecules such that these calculations could be

carried out in an efficient and feasible way; ro-vibrational calculations of linear

molecules are very non-trivial and require a unique treatment in order to avoid

singularities in the Hamiltonian. A novel approach was employed in varia-

tional nuclear motion programme TROVE, which involves the use of a finite

Dnh symmetry group and classification of ro-vibrational states using the vibra-

tional angular momentum operator, L̂z. This has been used in nuclear-motion

calculations to compute an ab initio linelist of 12C2H2 covering 13.9 million

transitions between 2.7 million states, up to a rotational excitation of J = 58.

In order to facilitate an accurate calculated spectra, available experimental

data of 12C2H2 were collated and analysed to obtain an accurate set of 11,213

empirical energy levels using the MARVEL procedure. As demonstrated,

these can be used to produce a high-accuracy potential energy surface and

subsequent semi-empirical model for the ro-vibrational energies and intensities

of acetylene, which can be computed up to high ro-vibrational excitations.

Calculations using this semi-empirical model are in progress for an accurate

high-temperature linelist, expected to be valid up to 1000–1200 K. This will be

published in due course and will be appropriate for characterising exoplanet

and cool stellar atmospheres; these ongoing calculations are discussed.



Impact Statement

The work outlined in this thesis forms a solid base for any future research

related to ro-vibrational energy and intensity calculations of linear molecules,

for acetylene in particular. The methods which have been implemented in the

nuclear-motion routine used by the ExoMol group, TROVE, are general and

can be applied to other general nuclear-motion routines. These updates have

been used to calculate an ab initio linelist for acetylene and can also be used to

compute the molecular spectra for other linear molecules, such as cyanoacety-

lene, C3HN, for example (which is potentially important in exoplanet atmo-

spheres and in investigating that of Titan), or propynylidyne, C3H. New ab

initio potential energy and dipole moment surfaces are also presented, which

can be used by the spectroscopic community.

An acetylene linelist will be beneficial to astronomers, in the fields of both

low-resolution and high-resolution astronomical spectroscopy, in the search for

acetylene in astrophysical environments; in particular the atmospheres of hot

exoplanets or cool stars.

The MARVEL analysis of 12C2H2 which was undertaken as part of this

thesis was performed in collaboration with secondary-school students between

16–18 years of age as part of a scheme called ORBYTS (Original Research

by Young Twinkle Students). The general method of conducting a MARVEL

analysis of a particular molecule has been subsequently used in other ORBYTS

collaborations with secondary-school students. It is hoped that including stu-

dents in real peer-reviewed research from an early age will encourage them to

explore STEM-related subjects and engage them in modern scientific methods.
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Chapter 1

Introduction

Exoplanet (Noun) • A planet which exists outside of our solar system.

Though the existence of exoplanets has been theorised for much longer, the

first officially confirmed detection was around a pulsar in 1992 [1] and the

first orbitting a sun-like star in 1995 [2]. The latter planet, 51 Pegasi b, is

termed a “hot Jupiter” due to its large size and close-in orbit, and was the

first insight into how different other solar systems could be to our own. Since

then the number of exoplanet detections has come hurtling in, with almost

4000 confirmed detections as of June 2018 [3]. It has been predicted that there

is, on average, at least one planet around every star in the Milky Way [4].

With these new discoveries inevitably comes the desire for a new branch of

astrophysics; the atmospheric characterisation of exoplanets.

At the temperatures of many exoplanets and cool stars (up to around 3000

– 4000 K [5, 6]), molecules are often expected in abundance [7]. An essential

component in the analysis of such astrophysical atmospheres is therefore ac-

curate and comprehensive spectroscopic data for all molecules of astrophysical

importance, for a variety of pressures and temperatures. While a large amount

of highly accurate data have been determined experimentally for a number of

such molecules, they have largely been measured at room-temperature and

are thus not well suited to the modelling of high-temperature environments;

theoretical data are required for this purpose. The ExoMol project [8, 9] was

set up for this reason, to produce a database of computed line lists appropri-
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ate for modelling exoplanet, brown dwarf or cool stellar atmospheres. As a

result, high quality variational spectra which are appropriate up to high tem-

peratures have been calculated for a host of molecules as part of the ExoMol

project, including CH4 [10, 11, 12], HCN/HNC [13], PH3 [14], H2O2 [15], SO2

[16], H2S [17], SO3 [18], VO [19], CO2 [20], SiH4 [21], H2O [22], C2H4 [23],

and, due to the work outlined in this thesis, C2H2 [24]. The spectral analysis

of the latter molecule, acetylene, is desirable for a number of astrophysical

applications, including the retrieval of exoplanet atmospheres [25, 26, 27], in-

vestigations into cool carbon-rich stars [28, 29, 30], and potentially for the

study of brown dwarf atmospheres [31]. Acetylene, also known by its chemical

formula C2H2 or HCCH, is a four-atomic (tetratomic) molecule which is linear

in its equilibrium configuration. The rotation-vibration spectrum of a poly-

atomic molecule of this size, at the temperatures of exoplanets and cool stars,

typically spans the infra-red region of the electromagnetic spectrum. In this

region, only transitions between rotation-vibration (ro-vibrational) levels are

important; electronic transitions are of too high energy to be of interest. Such

ro-vibrational calculations essentially require a solution to the nuclear-motion

Schrödinger equation, with some approximations required to enable feasible

computational treatment. The challenge with acetylene comes with its linear

geometry at equilibrium structure; linear molecules require special considera-

tion for calculations of ro-vibrational energies [24, 32], as will be explored in

this thesis. The special treatment of linear molecules in theoretical calculations

has previously been adequately addressed for calculations involving linear tri-

atomic molecules [33, 34, 20, 35, 36, 37], but not for linear molecules with four

or more atoms.

There have been a number of previous attempts to perform ab initio varia-

tional calculations on the ground electronic state of C2H2 [38, 39, 40, 41, 42, 43],

but these are apparently currently too computationally demanding to make

them viable for calculations up to the highly rotationally excited states that

have been calculated in this work, and only data for low ro-vibrational ex-
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citations are presented in the literature. Effective Hamiltonian and similar

approaches have been implemented to obtain spectra up to a relatively high

excitation [44, 45, 46, 47]. However, while such approaches are stereotypically

very good in areas of the spectrum with much experimental data, they would

not be expected to extrapolate so accurately up to higher energies and thus

do not offer the coverage that variational calculations do. Comprehensive, ac-

curate opacities and cross sections for C2H2, valid up to high temperatures,

are therefore still needed for many areas of astrophysics. In this thesis a vari-

ational approach is presented, based on a mixture of ab initio and empirical

models, which can be used in high ro-vibrational energy calculations to produce

accurate high-temperature opacities and cross sections for C2H2.

A review of the software used to model molecules as part of the ExoMol

project is given in Ref. [48]: Duo [49] computes vibronic spectra for diatomics,

DVR3D [34] computes rotation-vibration spectra for triatomics, and TROVE

[50, 51] computes rotation-vibration spectra for general polyatomic systems.

All three programs are publicly available from https://github.com/ExoMol. A

large part of the work presented in this thesis is in developing numerical meth-

ods for treating small-to-medium linear polyatomic molecules, with particu-

lar focus on 12C2H2, and implementing them into variational nuclear motion

programme TROVE (Theoretical ROVibrational Energies) [50, 51], which

computes the ro-vibrational energy levels and the probabilities of transitions

between them. As will be shown (see Chapters 4 and 7), this implementa-

tion involves the introduction of a finite Dnh symmetry group (instead of the

infinite-order D∞h group) and classification of ro-vibrational states using the

vibrational angular momentum operator, L̂z, with the value of vibrational an-

gular momentum, l, giving an indication of the value of n in Dnh which should

be used.

Highly accurate experimentally determined data provide an essential com-

ponent in the calculation of a high-quality linelist, for both effective Hamil-

tonian and the majority of variational approaches. Fortunately for 12C2H2, a

https://github.com/ExoMol
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wealth of experimental ro-vibrational spectral data has been recorded over the

decades [45, 46, 52, 53, 54]. In the current work, all such experimental data

that could be gathered from the literature was collated and analysed for the

main isotopologue of acetylene, 12C2H2, to provide a set of empirically derived

energy levels (Chapter 5), which are used in calculations of a high-accuracy

linelist for 12C2H2.

This thesis is structured as follows. Chapter 2 gives some background

and theory, with specifics for acetylene given in Chapter 3. The symmetry

group used to classify the ro-vibrational states in a linear centrosymmetric

molecule such as acetylene is introduced in Chapter 4, with general transfor-

mation matrices presented for the Dnh group (Chubb et al. [55]). The collation

and analysis of experimental transition data for acetylene is outlined in Chap-

ter 5 (Chubb et al. [56]), which has led to a set of experimentally determined

energy levels to be used in the process of calculating a high-accuracy linelist.

The singularity issue for linear molecules is described in Chapter 6, with two

alternative approaches to dealing with it (3N− 5 and 3N− 6) introduced in

Chapter 6 and investigated in detail in Chapter 7. The (3N− 5) approach,

which was fully implemented into TROVE over the course of this research,

makes use of the Dnh symmetry group, and is utilised in order to calculate the

ab initio linelist, which is presented in Chapter 8, along with ab initio poten-

tial energy and dipole moment surfaces. Chapters 6, 7 and 8 all relate to the

published work of Chubb et al. [24]. Chapter 9 outlines current work on the

aCeTY linelist, which will be highly accurate and, as demonstrated, should be

appropriate up to around 1000–1200 K. This will be published in due course.

Conclusions and future work are given in Chapter 10.



Chapter 2

Background

2.1 Motivation

Acetylene, HCCH, is a linear tetratomic unsaturated hydrocarbon whose spec-

tra is important in a large range of environments. On Earth, these range from

the hot, monitoring of oxy-acetylene flames which are widely used for welding

and related activities [57, 58], to the temperate, monitoring of acetylene in

breath, giving insights into the nature of exhaled smoke [59], vehicle exhausts

[58], and other air-born pollutants [60]. Acetylene is also important in the

production of synthetic diamonds using carbon-rich plasma [61]. Further out

in our solar system, acetylene is found in the atmospheres of cold gas giants

Saturn [62, 63], Uranus [64] and Jupiter [65, 66], the hydrothermal plumes

of Enceladus [67], and in the remarkably early-earth-like atmosphere of Titan

[68, 69], where there has even been some speculation as to acetylene’s role

in potential non-earth-like life [70, 71, 69, 72, 73, 74] and reactions involving

molecules of pre-biotic interest [68, 71, 69]. It has been detected on comets such

as Hyakotake [75], Halley, and 67P/Churyumov-Gerasimenko [76]. Even fur-

ther into the galactic neighbourhood, acetylene appears in star forming regions

[77], is speculated to be an important constituent of clouds in the upper atmo-

spheres of brown dwarfs and exoplanets [78, 25, 31, 79, 80, 81], and is thought

to play an important role in dust formation [82] and AGB star evolution and

atmospheric composition [47, 83, 28, 84, 85, 86], providing a major source of



2.1. Motivation 30

opacity in cool carbon stars [87, 84]. The first analysis of the atmosphere of a

“super-Earth” exoplanet, 55 Cancri e [27], speculates that acetylene could be

present in its atmosphere; however the spectral data available at the time did

not allow for an accurate verification of its presence in such a high tempera-

ture environment. A similar conclusion was found for “hot Jupiter” extrasolar

planet HD 189733b [26] and for carbon-rich stars in the LMC [28, 29, 30].

Alternative spectral data was used in the cases listed here; low-

temperature data from HITRAN [88] in the case of Refs. [28, 26] and opacity

sampling from Ref. [89] in the case of Refs. [29, 30]. The difference between

using HITRAN and theoretical ExoMol spectra has been highlighted in works

such as [90], which demonstrates a significant (and observable with instruments

such as the James Webb Space Telescope (JWST), see Section 2.4.2) difference

between the use of the two spectral data sources for phosphine. HITRAN is

a database of largely experimental data obtained at room-temperature; ob-

taining such data at high temperature is a challenge [91], causing HITRAN to

be reliable at room-temperature but incomplete at higher temperatures, with

very many of the weak lines which can become important missing. This makes

it ineffective for modelling the spectra of cool stars or hot exoplanets. Simi-

larly, the opacity sampling data of Jørgensen [89] used by Refs. [29, 30] is not

suitable for requirements of high resolution spectra and some differences have

been noted between predicted and modelled spectra, especially for the bands

around 3.1 µm and 14 µm [92]. Various other extensive spectral databases

besides ExoMol and HITRAN include HITEMP [93], CDMS [94], GEISA [95],

TheoReTS [96], SPECTRA [97], MeCaSDA and ECaSDa [98]. Accurate high-

temperature variationally computed spectra have been produced for molecules

such as CH4 [99, 100, 101, 102, 103], PH3 [104], NH3 [105, 106] and C2H4

[107], but for C2H2 there is either not an extensive coverage of data that

is appropriate for modelling up to high temperatures [96, 94, 93, 88] or the

spectra were calculated based on the theory of effective Hamiltonians [46, 44],

which tend to extrapolate poorly for high rotationally or vibrationally excited
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states for which no experimental data is available. Spectral data for acetylene,

valid up to high temperatures, is therefore still desirable for many areas of

astrophysics.

2.2 Spectroscopy

Every molecule or atom has a unique set of quantised energy levels, the energies

of which are dictated by the laws of quantum mechanics. For an atom these

are related to the internal energy of the component electrons only (electronic

energy levels), but for a molecule the energy can also be due to vibrational

and rotational motions, with the relative sizes of these types of energy levels

given by:

Eelectronic > Evibrational > Erotational. (2.1)

Figure 2.1: An illustration of vibrational (ν) and rotational (J) energy level

structure, with labelled examples of P (∆J =−1), Q (∆J = 0) and R (∆J = +1)

branch transitions, all within the ground electronic state.

As illustrated in Figure 2.1, the vibrational levels are sub-levels of the elec-

tronic states, and the rotational levels are further sub-levels of the vibrational

states. The ground state is the lowest energy state, where all quantum numbers
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(rotational, vibrational and electronic) are zero. The ground ro-vibronic (rota-

tional, vibrational and electronic) state retains some energy as a result of the

Heisenberg uncertainty principle, known as the zero point energy (ZPE). The

energies of higher quantised levels are typically given relative to the ground

ro-vibronic state, along with the relative integer quantum number labels given

assignments upwards from 0. It is the differences in energy between these

levels which is important; if some incident electromagnetic light on a molec-

ular species1 includes a photon of an energy2 exactly equal to the difference

between two energy levels, then this photon of energy will be absorbed by

the molecule, and it will jump from the initial lower energy level to the up-

per energy level (assuming a transition between the two particular states is

allowed by the rules of quantum mechanics). Similarly, a photon of energy

can be emitted in order for a jump downwards in energy levels to be made.

Transitions, due to either absorption or emission of photons, cannot, however,

occur between all energy states in a molecule. The probability of a transition

between two states is determined by quantum mechanical selection rules (see

Section 3.5), with some transitions strongly allowed and some weakly allowed

or forbidden. These transitions, a difference between two energy level states,

are typically either given in units relating to wavelengths λ (microns, µm) or

transition frequency ν̃ (wavenumbers, cm-1), with ν̃(cm-1) = 10,000
λ (µm) . Energy, E,

frequency, ν , and wavelength, λ , are all related by Planck’s constant, h, and

the speed of light, c, via

E = hν =
hc
λ

, (2.2)

where h = 6.626068×10−34J ·s. Ẽ, in units of cm-1, is often know as the energy

term value.

For a molecule, the type of motion which is induced due to the absorp-

tion of a photon of energy can either be purely rotational in nature (which

1The same applies to atomic species, but the focus of this thesis is on molecules, so

references to atoms will be dropped from now on.
2The terms ’energy’ and ’frequency’ are often used interchangeably, as demonstrated by

Equation (2.2).
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Figure 2.2: An illustration of the approximate wavelength regions of the elec-

tromagnetic (EM) spectrum. Low energy rotational transitions are typically

found in the microwave region, medium energy ro-vibrational transitions in

the infrared (IR) and higher energy electronic transitions in the visible and

ultraviolet (UV) regions.

is related to radiation being absorbed in the microwave region of the elec-

tromagnetic (EM) spectrum, as shown in Figure 2.2), a combination of rota-

tional and vibrational, known as “ro-vibrational” (typically the infra-red (IR)

region of the EM spectrum), or a combination of rotational, vibrational and

electronic, known as “ro-vibronic” (typically the UV/visible region). For poly-

atomic molecules (those composed of more than two atoms) such as acetylene,

the region of importance for astrophysical environments such as warm exo-

planets and cool stars is the IR, where ro-vibrational transitions dominate (see

Section 2.3).

The unique set of energy levels, E, (as illustrated in Figure 2.1, but with

E in Eq. (2.3) representing all types of energy level, not just electronic) are
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essentially found by solving the Schrödinger equation

ĤΨ = EΨ (2.3)

where Ĥ is the Hamiltonian operator and Ψ the wavefunction related to the

species in question. This eigenvalue equation is commonly constructed in ma-

trix form in order to be solved numerically using a variational approach. The

ro-vibrational version of Equation (2.3) will be explored in Section 2.3.

2.3 Ro-vibrational Spectroscopy

As mentioned in the previous section, the region of importance for astrophysical

environments such as molecule-dominated exoplanets and cool stars [6] is the

infra-red, where ro-vibrational transitions dominate for polyatomic molecules

such as acetylene. For these polyatomic molecules, transitions between any

electronic energy levels occur at an energy much larger than expected in such

environments and so will be ignored for the purpose of this thesis; focus will be

on the transitions which occur between rotation-vibration levels in the ground

electronic state of Figure 2.1 only. The transitions between different electronic

states are usually important for smaller, diatomic (two-atom) molecules. In

order for a molecule to exhibit pure rotational transitions, it should have a

permanent dipole (at least this is the case in the rigid-rotor approximation,

when centrifugal distortion is ignored), which is not the case for a linear sym-

metric molecule such as acetylene; the charge is distributed evenly relative to

the centre of mass when the molecule is in its equilibrium configuration, at the

ground ro-vibronic state. In practise, rotational motion will break the sym-

metry of a linear molecule due to centrifugal distortion, leading to a relatively

weak rotational spectrum, which can in theory be observed. A molecule with

an asymmetric charge distribution and therefore a permanent dipole such as

H2
32S or HCN will exhibit a dipole-allowed rotational spectra [108] (see Sec-

tion 5.6), which can be observed in the microwave region of the EM spectrum.

These lower energy transitions will typically be observed in cooler astrophysical

environments, such as the interstellar medium (ISM) [6].
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2.3.1 The Ro-vibrational Schrödinger Equation

The unique set of ro-vibrational energy levels for a particular polyatomic

molecule are found by solving the ro-vibrational Schrödinger equation:

ĤrvΨrv = ErvΨrv, (2.4)

the general form of which is given in Eq. (2.3). An exact solution to Eq. (2.4)

is numerically unfeasible, so approximations have to be used. The most sig-

nificant of these is the Born-Oppenheimer (B-O) approximation, where the

motions of the electrons are treated separately to those of the nuclei, an ap-

proximation usually considered valid due to the relatively much larger mass

of the latter in comparison to the former. The use of the B-O approximation

enables the concept of a potential energy surface (PES), via solution of an

electronic Schrödinger equation. In Eq. (2.4), the Hamiltonian Ĥrv is formed

from the kinetic energy operator (KEO), T̂ , and potential energy function, V :

Ĥrv = T̂ +V. (2.5)

The electronic Schrödinger equation is solved at each position of the nuclear

coordinates, from which arises the term “clamped nucleus” Hamiltonian (see,

for example, Ref. [109]):

[T̂e +V̂e]Ψe = EeΨe, (2.6)

which will enable a solution to the nuclear Schrödinger equation of Eq. (2.4)

in the following way. T̂e and V̂e represent the kinetic energy operator of the

electrons and the Coulomb potential energy operator, respectively. In atomic

units, these are expressed as:

T̂e =−1
2

ne

∑
j=1

∇
2(R̄e j), (2.7)

and

V̂e =−
n

∑
i=1

ne

∑
j=1

Zi

|R̄e j− R̄(k)
ni |

+
ne

∑
i< j

1
|R̄e j− R̄ei|

. (2.8)
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Here, the subscripts e and n denote the electrons and nuclei, respectively.

ne and n give the number of electrons and nuclei, respectively, Z gives their

charges, ∇ is the Laplacian, R̄e and R̄n refer to the whole set of electron and

nuclear vector positions, respectively, and the (k) superscript of R̄(k)
ni refers to

a particular set of nuclear coordinates at which Eq. (2.8) is evaluated.

For each (k) configuration of the nuclei, there is a corresponding potential

energy of the electrons, given by a sum of the energy eigenvalue, Ee, from

the solution of the electronic Schrödinger equation (Eq. (2.6)) and the nuclear

repulsion potential energy:

E(E)(R̄(k)
n ) = E(E)

e (R̄(k)
n )+

n

∑
i< j

ZiZ j

|R̄(k)
n j − R̄(k)

ni |
. (2.9)

The potential energy surface E(E)(R̄n) of the electons is thus built as a function

of the internal molecular coordinates, by evaluating Eq. (2.9) at a large num-

ber of nuclear geometries (k). The nuclear Schrödinger equation, Eq. (2.4),

can then be solved to find the ro-vibrational energy eigenvalues, with the po-

tential energy surface V in Equation (2.5) given by the electronic potential

energy surface E(E)(R̄n). Electronic structure packages such as MOLPRO [110]

are available to solve the electronic structure calculations of Eq. (2.9), while

nuclear motion programmes such as TROVE (Theoretical ROVibrational En-

ergies) [50, 51] have been written to compute the ro-vibrational energy levels

of Eq. (2.4). The exact form of the kinetic energy operator (KEO) as im-

plemented in TROVE is given in Section 6.3, with modifications for linear

molecules outlined in Section 7.1.

2.3.2 Ro-vibrational Spectra

A linelist (ro-vibrational or otherwise) is comprised of the set of energy levels

found by solving Eq. (2.4) which are unique to a particular molecule, along

with the probability of the transitions between them. The probability of a

transition is often given in the form of an Einstein-coefficient; A ji is defined as

the Einstein-A coefficient for spontaneous emission (the number of transitions

per second from state j to state i), and is used for measuring the likelihood of a
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particular transition (the transition strength). A ji is related to the Einstein-B

coefficient, Bi j, for absorption:

Bi j =
c3

8πhν̃3
ji

g j

gi
A ji, (2.10)

with ν̃ ji the transition frequency between the two states, c the speed of light,

h the Planck constant, and gi and g j the nuclear spin quantum numbers for

the two states (see Section 3.4).

The Einstein-A coefficient, A ji, for a particular transition from state i to

state j is calculated by:

A ji =
8π4ν̃3

i j

3h
(2J j + 1)S( j← i), (2.11)

where J j is the rotational quantum number associated with the upper energy

level (for absorption) and S( j← i) is the transition strength:

S( j← i) = ∑
A=X ,Y,Z

| 〈Ψ j|µA |Ψi〉 |2. (2.12)

Here, µA is the dipole moment vector (usually given in units of Debye), in

a space-fixed (laboratory-fixed) axis system XY Z, with µA the component of

the dipole moment along the axis A = X ,Y,Z. The dipole moment is related

to a transition between states i and j, where Ψi to Ψ j are the complete in-

ternal wavefunctions, and it essentially describes the charge distribution in a

molecule. The transition strength will be zero for a transition over which the

dipole doesn’t change, which is why the fundamental C-C and symmetric C-H

stretches are not featured in the IR spectrum for acetylene.

The Einstein-A coefficients are temperature independent, but can be used

to calculate the temperature-dependent absolute intensity of a transition be-

tween an initial state i and final state j:

I( j← i) =
Ai j

8πc
gns(2J j + 1)

exp(−c2
Ẽi
T )

Q(T )ν̃2
i j

[
1− exp(

−c2ν̃i j

T
)
]
, (2.13)

where gns the nuclear statistical weight (also known as the nuclear degeneracy,

as it gives the number of states with the same energy but different quantum
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numbers; see Section 3.4 for more details), J j is the rotational quantum number

of the final state, Ẽi the energy term value (typically in units of cm-1) of

the initial state, Q(T ) the temperature dependent partition function, ν̃i j the

transition frequency between the two states and c2 = hc
k is the second radiation

constant, with k the Boltzmann constant.

Absorption cross-sections, σν , require the evaluation of the intensity of a

transition (Eq. (2.13)) along with a corresponding line profile, due to the at-

mospheric processes which lead to a broadening of the spectral lines; in reality

there is no idealised stick spectrum (which is essentially a plot of transition

frequencies and line intensities, with no line profiles). More details on broad-

ening processes and line profiles can be found in Section 2.6.2. The absorption

cross-sections are typically evaluated across a series of frequency bins in a

given frequency range, which will determine the spectral resolution. Ideally

the resolution should match that of the instrument which was used to measure

the observational data to be analysed using atmospheric retrieval codes (these

are designed to solve the radiative transfer equation; see Section 2.5). If a

frequency range from ν̃min to ν̃max is used with N grid points, then

∆ν̃ =
ν̃max− ν̃min

N
(2.14)

will represent the resolution of the spectrum.

In order to be useful in atmospheric models, the number density of a par-

ticular molecular state needs to be taken into account along with the absorption

cross-section; when multiplied together they give the absorption coefficient αν .

The initial distribution of energy states is determined by the Boltzmann dis-

tribution, which describes the number density ni of a molecular state i as a

fraction of the total number density of the species, n:

ni

n
=

gie−Ei/kT

∑m gme−Em/kT
=

gie−Ei/kT

Q
, (2.15)

where Q is the total internal partition function, Ei is the energy of each i

molecular state (relative to the ground ro-vibronic state), k is Boltzmann’s
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constant, T is the temperature, gi is the degeneracy of a particular state (see

Section 3.4), and m is the sum over all molecular states.

2.4 Exoplanet Detection and Characterisation

A popular mode of detection and characterisation of exoplanets, restricted to

planets which happen to pass in front of their host star from the point of view

of an observer on (or very close to) Earth, is the transit method, as illustrated

in Figure 2.3.

Figure 2.3: The transit method makes detections of exoplanets by observing

a relative tip in the brightness of the host star as the planet passes in front, as

illustrated here. Image credit: NASA Ames.

While a detection results from a periodic dip in the intensity of the stellar

light, due to the planet blocking a proportion of the stellar surface, there is

more to be discovered if the transiting planet has an atmosphere. In this case

the light during the primary transit (when the planet passes in front of the star)

and the secondary transit (as it passes behind) can be compared at a variety

of wavelengths and analysed in order to deduce the absorption and emission

processes at work, respectively. With no external influences the light emitted

from a star can be modelled as a black-body spectrum which only depends

on the emitter’s temperature [6]. In the case of this light passing through an

atmosphere, there will be subtleties in the spectra as a result of molecules or
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atoms absorbing characteristic frequencies of light from the stellar blackbody

spectrum. It is important, however, to note that the stars themselves have an

atmosphere with their own absorption features which will need to be taken into

account during any analysis. For very hot stars, only atoms would be able to

exist in such high-temperature conditions, but for cooler stars and exoplanets

(up to around 3000–6000 K [5, 6]), molecules are often expected in abundance

[7].

Direct imaging is one alternative method of detection and characterisation,

however it is currently limited to big (more massive than Jupiter), bright,

young (heated predominantly from their interior) planets which are located

far from their host star [111, 79]. High-resolution Doppler spectroscopy is a

complementary method of molecular atmospheric detection, as briefly outlined

in Section 2.4.3.

2.4.1 Exoplanet Detection

As aforementioned, there have been almost 4000 confirmed exoplanet detec-

tions as of July 2018 [3], with predictions placing on average at least one planet

around every star in the Milky Way [4]. According to the NASA exoplanet

archive [3], the vast majority of exoplanet detections to date, appoximately

80%, have been via the transit method. Almost all other detections have been

via the radial velocity method, with only around 1% as a result of direct imag-

ing and other methods such as micro-lensing.

Notable exoplanetary detections, with more than one earth-sized planet in

a system within the so-called “habitable zone” (the region in which life, as we

know it, could potentially exist [112]), include Kepler-62 [113] and TRAPPIST-

1 [114]. A review of the instrumentation used for the detection and characteri-

sation of exoplanets can be found in Ref. [115], though it should be noted that

this is now a few years out of date. Of the planets which were detected using

the transit method, around 80% were as a result of the NASA Kepler mis-

sion [116] and 10% the follow-up K2 mission, making them the major source

of exoplanet detections to date.
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2.4.2 Exoplanet Characterisation

The atmospheric characterisation of exoplanets is a big motivation for the

work outlined in this thesis, with a number of molecular detections made to

date [117, 118, 119, 120, 121, 122, 27, 123, 124, 125, 126, 127, 128, 129]. As pre-

viously mentioned, the transit method is one of the principle techniques which

is currently used for both detection of exoplanets and the characterisation of

their atmospheres.

The dip in light intensity which is observed via the transit method (Fig-

ure 2.3), due to the relative ratio of the size of the star to the size of the planet,

will vary dependent on the wavelength region which is being observed. Plot-

ting the relative decrease in brightness at a variety of different wavelengths will

give a measure of the amount of incident radiation absorbed at that particu-

lar wavelength and therefore an absorption spectra can be inferred. Figure 2.4

gives an observed spectra from a planet, HD189733b (a“hot Jupiter”), orbiting

a binary star system which is 63 light years away [119]. The black triangles

give the observational data, collected from the Hubble space telescope at a

variety of wavelengths. The blue spectra is based on a model which includes

the spectral data of water (based on theoretical calculations by the ExoMol

group [130]), and the orange is methane [131] and water combined together

[132, 119]. It can clearly be seen that the model which includes both water

and methane fits the observed data much better than the pure water model.

These models are found as a result of solving the radiative transfer processes

in the exoplanetary atmosphere, as outlined in Section 2.5.

The first potential detection of a molecule on an exoplanet was water

vapour in 2007 [120], made by the Spitzer Infrared Spectrograph (IRS). The

detection was based on only three observational data points, with relatively

large error bars. The quality of observational data has improved since then, as

illustrated by Figure 2.4, and is expected to greatly improve in the future with

instruments such as the James Webb Space Telescope (JWST) [133, 134] and

ARIEL (Atmospheric Remote-sensing Exoplanet Large-survey) [135, 136, 137]
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Figure 2.4: Observed spectra from HD189733b (a “hot Jupiter”) collected from

the Hubble space telescope at a variety of wavelengths (black triangles), and

corresponding models with just water (blue) and a combination of water and

methane (orange). This figure is taken from Ref. [119].

due to launch in the coming years. ARIEL [135, 136, 137] was recently selected

as a mission for ESA and is due for launch in 2028 with the aim to conduct

a population characterisation study on around 1000 targets. The launch date

for the next big exoplanetary characterisation mission, JWST [133, 134], has

now been pushed back to at least 2020.

Another upcoming mission is Twinkle [138, 139, 140], a UK-led exoplan-

etary atmosphere mission which is set to launch into earth-orbit by 2022 and

will be the first mission designed to be purely dedicated to the characterisa-

tion of exoplanetary atmospheres. The satellite will target a list of previously

discovered exoplanets which are known to transit in front of their host star,

in order to search for molecular features in their atmospheres. As part of the

Twinkle Space Mission’s educational programme, EduTwinkle, students be-

tween the ages of 15 and 18 have been performing original research associated

with the exploration of space since January 2016. This programme is called

ORBYTS (Original Research by Young Twinkle Students) [141, 142]; the work

of Chapter 5 is based on the published work of Refs.[56] and [143], respectively,

which were undertaken as ORBYTS collaborations.
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2.4.3 High-Resolution Doppler Spectroscopy

As well as the (currently) relatively low-resolution detections of molecules in

transiting exoplanet atmospheres, a complementary method of astrophysical

detection, where molecular lines in a planetary spectrum are shifted in wave-

length due to the radial velocity of the planet, is high-resolution Doppler spec-

troscopy. Detections are made via typically ground-based spectrographs which

can operate at a much higher resolution than those in space [144, 26]; it was

using one of these instruments that enabled acetylene to be first detected in

an astronomical environment in 1989 [145], from a high-resolution (R=15,000,

where R= λ

∆λ
is the resolving power and ∆λ is the smallest distinguishable wave-

length at a wavelength of λ ) ground-based telescope, the Infrared Telescope

Facility (IRTF) [146]. The orbital velocities of the target planets, typically

“hot Jupiters”, are generally much higher than the stellar orbital velocities, en-

abling the identification of those molecular lines of the planetary atmosphere

which will be shifted more in comparison to those of the star (and also when

compared to the Earth’s telluric spectrum, which is not shifted) [79].

CRIRES (CRyogenic high-resolution InfraRed Echelle Spectrograph) is

another high-resolution instrument (upto R ∼ 100,000) which has enabled the

first ground-based detections of carbon monoxide and water in the atmospheres

of hot giant exoplanets [147, 148, 149]. It has been noted that CRIRES would

be sensitive to detection of acetylene in hot Jupiter atmospheres, in particular

in the 3.1 µm region [148, 26]. However, it has also been noted that the

spectroscopic data for 12C2H2 is incomplete in HITRAN, in particular the

weak lines which become important at higher temperatures [26], and there

appears to be a general demand for such data [150, 92] (see Section 2.1).

It is therefore important and of use to the high-resolution exoplanet and

astrophysical community to not only provide a complete linelist, but to en-

sure experimental data is utilised to make the data as accurate as possible.

In Chapter 5, the collation and analysis of a large amount of experimentally

determined ro-vibrational transition data for acetylene was undertaken with
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this aim in mind. The data can be used to refine a theoretically calculated

potential energy surface or to replace calculated energy levels (which will typ-

ically be less accurate than experimental data), in order to ensure maximum

accuracy of a theoretical linelist.

2.5 Radiative Transfer

Radiative transfer describes the process of radiation being altered as it passes

through a volume of gas. Only a basic summary of radiative transfer will be

outlined here; a full account can be found elsewhere (e.g. Ref. [111]).

Ideally all absorption, emission and scattering processes should be taken

into account when modelling the radiation which emerges from the top of an

exoplanetary atmosphere. Molecules dominate at the temperatures and pres-

sures of a typical exoplanetary atmosphere and so the principle contribution to

changes in radiation will be due to molecular processes. The radiative transfer

equation (assuming an atmosphere that does not change with time), describing

the change in intensity I of some EM radiation, over a distance s of gas is given

by:
∂ I(x, n̂,ν)

∂ s
=−κ(x,ν)I(x, n̂,ν)+ ε(x, n̂,ν), (2.16)

where the first term, −κ(x,ν)I(x, n̂,ν), describes the losses in intensity, and the

second, ε(x, n̂,ν), the gains in intensity. Here, κ is the extinction coefficient

and ε the emission coefficient. The intensity, I, is defined as the amount of

energy passing through a surface area dA, with differential solid angle dω

centred about n̂, per frequency interval dν and unit time dt:

dE(ν , t) = I(x, n̂,ν , t)n̂ · κ̂dωdAdνdt. (2.17)

Here, κ̂ is a vector normal to the surface dA. Note that the time dependence

of the intensity is often omitted in the solutions of radiative transfer [111].

The terms in Equations (2.16) and (2.17) are functions of the location x in the

planetary atmosphere (which is often used interchangeably with the pressure

P and temperature T [111]), the vector n̂ about which the solid angle dω is

oriented, and the frequency ν .
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The opacity of an atmosphere describes how hard it is for radiation to

pass through it, and is dependant on the number density of each type of

molecule, the spread of energy levels, and their individual absorbing, emit-

ting and scattering properties. The spread of energy levels for each molecule

is temperature-dependent, given by the Boltzmann distribution of Eq. (2.15).

The opacity is typically represented by the extinction coefficient κ (with

units of m−1), which includes all processes that remove energy from a beam

of radiation, and is therefore composed of the absorption coefficient αν(T,P,ν)

and the scattering coefficient σs(T,P,ν) (which will not be explored in this the-

sis; a detailed account can be found elsewhere, e.g. Refs. [111, 6]). Integrating

the extinction coefficient over the path z of the radiation being observed gives

the optical depth, τ :

τ =
∫

κdz. (2.18)

The total absorption coefficient αν(T,P,ν) is the sum of absorption coefficients

of all molecular species present in an atmosphere, each of which is composed of

the molecular number density n ji for each energy state i of a molecule multiplied

by the corresponding absorption cross-section σ . The means to calculate the

absorption coefficients and cross-sections for molecules of astrophysical interest

are provided by databases such as ExoMol (see Section 2.6.1).

The concept of local thermal equilibrium (LTE) is often employed for

radiative transfer calculations, which is a valid assumption in regions of the

atmosphere where changes in temperature and pressure are small when com-

pared to the photon mean free path (which is the reciprocal of the extinction

coefficient κ). This is thought to be the case in planetary atmospheres which

have a high density of particles and which therefore have enough collisional

processes that matter and radiation will be in thermal equilibrium. It should

be noted, however, that an atmosphere will depart from LTE at its boundary,

and other low pressure environments, where radiative processes dominate over

collisional ones. The use of LTE makes finding a solution to the radiative

transfer equation, Eq. (2.16), much easier as it enables to use of a Boltzmann
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distribution (see Section 2.2, Equation (2.15)) to describe the molecular energy

level population as a function of temperature only.

2.5.1 Retrieval Codes

There are several exoplanet retrieval codes in use by the exoplanetary char-

acterisation community, with the aim to solve the radiative transfer equation,

giving the propagation of radiation through a medium, many of which use

ExoMol data (where available) as input into the spectral models.

Three alternative retrieval codes were recently compared by Baudino et

al. [90]; ATMO [151, 152, 153], petitCODE [154, 155] and Exo-REM [156]. It

has been previously mentioned that there was found to be a significant differ-

ence between using HITRAN and ExoMol data for phosphine. Various other

parameters which could affect the modelling of the same planet using different

codes were also investigated, including differences in chemical processes and in

the atomic or molecular line shape used. The models have subsequently been

updated based on this investigation, where problem parameters were identi-

fied [90]. Other successful retrieval models which have led to detections of

atmospheric species on exoplanets include τ-rex [157, 158], which has been

used in combination with RobERt [159], an algorithm based on deep-belief

neural networks trained to identify likely molecular signatures to include in

the full radiative transfer model, to model a large number of hot exoplanetary

atmospheres [27, 160, 161], and CHIMERA [162] which has detected water in

WASP-12b [128] and WASP-43b [163], and NEMESIS [164]. These retrieval

codes often also provide the capability for forward modelling, where a spectrum

is produced based on given input criteria.

2.6 Spectral Databases

Extensive molecular spectroscopic databases include ExoMol [8, 9], HI-

TRAN [165], HITEMP [93], CDMS [94], GEISA [95], TheoReTS [96], SPEC-

TRA [97], PNNL [166], MeCaSDA and ECaSDa [98]. The work undertaken in

this thesis was done as a part of the ExoMol project.
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2.6.1 The ExoMol Database

The ExoMol project [8, 9, 167] was set up to provide a database of ab initio

line lists appropriate for modelling exoplanet, brown dwarf or cool stellar at-

mospheres. The data which is provided by the ExoMol database (a full account

of which can be found in Ref. [9]) for each molecule of astrophysical interest is

comprised of:

• a “.states” file, giving the molecule’s unique set of energy levels, along

with a full set of quantum numbers (the ro-vibrational quantum numbers

for C2H2 are given in Section 3.1)

• a “.trans” file, giving the transition probabilities between allowed energy

states, in the form of Einstein-A coefficients

• (for some molecules) a“.broad”file, describing the broadening parameters

(typically for self, air, hydrogen or helium broadening) for the transitions,

as a function of rotational quantum number J

• a “.pf” file, giving the temperature dependent partition function (see

Section 3.7)

The Einstein-A coefficients, A ji, given in Eq. (2.10) (in units of s−1), which

are included in the ExoMol database represent the likelihood of a transition

between two particular states and are temperature and pressure independent.

These need to be converted into a suitable format, which is dependent on

temperature and pressure, for use in any code related to the process of radia-

tive transfer, as introduced in Section 2.5. ExoCross is a general program for

generating spectra from molecular line lists [168], and accepts several formats

including those of ExoMol and HITRAN. It produces cross-sections to a reso-

lution that is determined by Eq. (2.14), and can also produce thermodynamic

quantities such as temperature dependent partition functions (see Section 3.7).
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2.6.2 Line Broadening Parameters

An observed spectrum will not simply be a pure stick spectrum (a list of line

positions and line intensities); there will be some broadening of the spectral

lines associated with various atmospheric processes. The main types of line

broadening in an exoplanetary atmosphere are Doppler and pressure broad-

ening. There is also some natural broadening of a line due to the Heisenberg

uncertainty principle and the associated uncertainty in the determination of

energy, however it is usually negligible in exoplanetary atmospheres in com-

parison to the other types of broadening and so is often ignored. Doppler

broadening arises due to the thermal velocities of atmospheric molecules, and

is thus dependent on temperature, giving a Gaussian line profile. Pressure (or

collisional) broadening, which, as the name suggests, is pressure-dependent,

leads to a Lorentzian profile. A convolution of Gaussian and Lorentz pro-

files gives a so-called Voigt profile; the efficient and accurate computation of

a Voigt profile has been the subject of a number of publications, for example

Refs. [168, 169, 170, 171, 172, 173, 174]. The exact form of the line profile is

also dependent on the broadener; the atomic or molecular species which is col-

liding with the molecule in question. Typically, self, air, hydrogen and helium

are important broadeners for atmospheric characterisation [175]. Where avail-

able, broadening parameters are provided as part of the ExoMol database, as

specified in Ref. [175] (as of 2017), but there is demand for such parameters to

be made available for a wider range of molecules and broadeners [170]. A more

comprehensive account of line broadening is not necessary for the purpose of

this thesis, and can be found elsewhere, see e.g. Ref. [111, 168].

Broadening coefficients for C2H2 are included in the HITRAN-2016

database [176], taken from Ref. [177] for self and air broadening, and Ref. [178]

for H, He and CO2 broadening. Other broadening coefficients for C2H2 can be

found in Ref. [179] for O2 broadening, Refs. [180, 181, 177, 182, 183, 184, 185,

186] for self-broadening, and Ref. [187] for N2 broadening. The temperature

dependence of N2 broadening coefficients for acetylene can also be found in
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Ref. [188]. It should be noted that the other referenced broadening coefficients

here would have largely been obtained at room-temperature.



Chapter 3

Acetylene Theory

Acetylene, also known by its chemical formula C2H2 or HCCH, is a tetratomic

(four-atomic) molecule which is linear in its equilibrium configuration. The

two carbon atoms are joined by a triple bond (due to two π bonds and one σ

bond), with single bonds joining the hydrogens either side. At high energies,

acetylene undergoes an isomerization to vinylidene, as illustrated in Figure 3.1,

expected to occur at around 15,000 cm-1above the acetylene ground state [40].

The vibrational modes of acetylene are illustrated in Figure 3.2. This thesis is

only concerned with the main isotopologue of acetylene, 12C2H2.

3.1 Quantum Number Labelling

The 11 quantum numbers that are typically used for labelling the upper and

lower states of 12C2H2, and will be used throughout much of this thesis, are

detailed in Table 3.1.

Each vibrational mode quantum number is given in normal mode notation;

v1 represents the symmetric C-H stretch ν1, v2 the symmetric C-C stretch ν2,

v3 the antisymmetric C-H stretch ν3, and v4 and v5 the doubly degenerate

bending modes, ν4 (symmetric) and ν5 (antisymmetric), respectively. l4 and l5

are the vibrational angular momentum quantum numbers associated with ν4

and ν5, respectively, with |l| = v,v−2 . . .1 for odd v, |l| = v,v−2 . . .0 for even

v. J is the quantum number associated with rotational angular momentum,

J. K = |k| is the rotational quantum number, with k corresponding to the
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Figure 3.1: Different conformations of acetylene and vinylidene. a) acetylene

in its linear equilibrium configuration, b) acetylene in its trans configuration,

c) acetylene in its cis configuration, and d) after isomerisation to vinylidene.

projection of the rotational angular momentum, J, on the molecular z-axis

(in units of h̄). For a linear molecule such as acetylene, K is also equal to

the total vibrational angular momentum quantum number, L ≡ |l| = |`4 + `5|

(see Section 7.1), and therefore K is sometimes also referred to as the total

vibrational angular momentum. The phase convention of Ref. [54] is followed in

the assignment of quantum numbers carried out in Chapter 5; K≡ |k|= |`4 +`5|

with `4 ≥ 0 if k = 0. The e or f labelling is also used, along with the nuclear

spin state (ortho or para); see Sections 3.3 and 3.4, respectively.

Throughout this thesis the notations (v1v2v3v`4
4 v`5

5 )K will be used to de-

scribe vibrational states and (v1v2v3v`4
4 v`5

5 )K , J, e/ f , ortho/para to describe

ro-vibrational states. The e and f labelling combined with J and nuclear spin

state (ortho or para) gives the rigorous designation of each state. Other quan-

tum number labels are approximate but, besides representing the underlying

physics, are necessary to uniquely distinguish each state. The convention for

labelling a transition between two states is to give the upper state notation on

the left, followed by a dash, and the lower state notation on the right. It is

also conventional to label upper state quantum numbers as, for example, J′ and

lower state quantum numbers as J′′. The notation P(16) will typically mean
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Figure 3.2: An illustration of the vibrational modes of acetylene. ν1 is a sym-

metric C-H stretch, ν2 is a symmetric C-C stretch, ν3 is an antisymmetric C-H

stretch, ν4 and ν5 are doubly degenerate bending modes, which are symmetric

(trans) and antisymmetric (cis), respectively. There are therefore 5 vibrational

modes leading to 7 vibrational degrees of freedom in total.
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Table 3.1: Quantum numbers used to classify the energy states of acetylene,

12C2H2.

Label Description

v1 CH symmetric stretch (σ+
g )

v2 CC symmetric stretch (σ+
g )

v3 CH antisymmetric stretch (σ+
u )

v4 Symmetric (trans) bend (πg)

`4 Vibrational angular momentum associated with v4

v5 Antisymmetric (cis) bend (πu)

`5 Vibrational angular momentum associated with v5

L = |l| Total vibrational angular momentum, |`4 + `5|

K = |k| Rotational quantum number; z-projection of the rotational quantum number, J

J Quantum number associated with rotational angular momentum, J.

e/ f Symmetry relative to the Wang transformation (rotational state parity, see Section 3.3)

ortho/para Nuclear spin state, see Section 3.4

J′′ = 16 and therefore J′ = J′′−1 = 15 (where, a rotational P-branch transition

is defined as ∆J = J′− J′′ =−1, a Q-branch transition as ∆J = J′− J′′ = 0 and

an R-branch transition as ∆J = J′− J′′ = +1).

3.2 Symmetry Labelling

The symmetry of a linear molecule such as HCCH will be explored in more

detail in Chapter 4, but will be touched upon here. For a linear molecule

such as 12C2H2 both the rotational Ψr and vibrational Ψv contributions to

the ro-vibrational wavefunction, Ψrv, should transform according to the point

group for centrosymmetric linear molecules, D∞h. The D∞h point group spans

an infinite number of irreducible representations; Σ
+/−
g/u (K = 0), Π

+/−
g/u (K = 1),

∆
+/−
g/u (K = 2) etc. However, after combining the rotational and vibrational

parts to make the ro-vibrational state, Ψrv, only the K = 0 states (i.e. Σ+
g , Σ−g ,

Σ+
u , Σ−u ) can lead to a total nuclear-rotation-vibrational state which obeys the

proper nuclear statistics, as described in Section 3.4. These are the irreducible

elements of the D2h(M) group [189], which according to the labelling scheme

of this thesis correspond to the four pairs: e ortho, e para, f ortho and f para.
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The correspondence depends on whether J is even or odd, as given in Table 3.2.

Table 3.2: Symmetry labels for the ro-vibrational states of a linear molecule

such as 12C2H2. The e/ f labels are defined in Section 3.3 (see also Ref. [190])

and ortho/para define the nuclear-spin state [56, 191] (see Section 3.4).

e/ f ortho/para

J odd: Σg
+ A1g +s f para

Σu
− A1u −s e para

Σg
− A2g −a e ortho

Σu
+ A2u +a f ortho

J even: Σg
+ A1g +s e para

Σu
− A1u −s f para

Σg
− A2g −a f ortho

Σu
+ A2u +a e ortho

For example, the vibrational state ν5 (Πu) can be combined with the

J = 1,K = 1 (Πg) rotational state to produce three ro-vibrational combina-

tions of Σ+
u , Σ−u and ∆u (D∞h point group). However only the Σ−u , Σ+

u states are

allowed by nuclear statistics. Here ν5, Πu, K, Πg are not rigourous quantum

numbers, while J = 1, e/ f and ortho/para are. Thus these two ro-vibrational

states are assigned (0000011)1,J= 1,e, para and (0000011)1,J=1, f , ortho, re-

spectively. It should be also noted that generally neither K nor v1, . . . ,v5 are

good quantum numbers1. However the quantity (−1)v3+v5 is a good quantum

number as it defines the conserved u/g symmetry as follows: a state is unger-

ade if (−1)v3+v5 = −1 and gerade if (−1)v3+v5 = +1. The +/− labelling is

derived from e/ f and J, as given in Table 3.3. Whether a state has + or −

parity is determined by the spatial inversion operator E∗, which is part of the

1A good quantum number is one which uniquely describes a state which is not mixed by a

state with a different value of that same quantum number. More formally, a good quantum

number is one whose operator commutes with the Hamiltonian.
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D∞h(M) molecular symmetry (MS) group (see Section 4.1). States of a linear

molecular are often also classified based on the inversion operation, with states

which are left unchanged called ‘gerade’ and labelled with a subscript g, and

those whose phase changes to opposite are called ‘ungerade’ and labelled u, as

in Table 3.2.

Table 3.3: Parity of states in 12C2H2 based on the symmetry labels used in

this work.

e/ f J Parity

e Odd −

e Even +

f Odd +

f Even −

3.3 e/ f Labelling in Linear Molecules

An interaction known as `-doubling occurs in linear molecules, which splits

the rotational, J, levels in certain vibrational states. The symmetry describing

these states is based on the total vibrational angular momentum quantum

number, K, as outlined in Section 3.2. There are, for example, two distinct

states in the 2ν4 band; one with K = 0 (Σ+
g , (0002000)0) and the other K =

2 (∆g, (0002200)2). In this case, an interaction between the states leads to

a splitting of the ro-vibrational levels in the K = 2 (∆g) sublevel, called `-

doubling; the split states are labelled as e and f . The e-level corresponding

to the K = 2 (∆g) state, ∆e, and the level corresponding to the K = 0 (Σ+
g )

state, Σe, repel each other, while ∆ f is unaffected. This effect is approximately

J(J +1) dependent and so becomes increasingly important at higher rotational

excitations [109]. If a ro-vibrational state has no rotational splitting (as is the

case if both `4=0 and `5 = 0, but not if `4 = 1 and `5 =−1), the state is always

labelled e and there is no corresponding f state.

Levels with parity +(−1)J are called e levels and those with parity −(−1)J
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are called f levels. In other words, e and f levels transform in the same way

as the rotational levels of 1Σ+ and 1Σ− states, respectively [190]. The e/ f

labelling for linear molecules was originally introduced by Brown et al. [190]

in order to eliminate issues relating to Pĺıva’s c/d labelling [192] and the s/a

labelling of Winnewisser and Winnewisser [193]. More information on the e/ f

rotational splitting can be found in Herman et al. [109].

3.4 Ortho/Para Labelling

Herman and Lievin [191] give an excellent description of the ortho and para

states of acetylene, which is summarised here. The hydrogen atoms in the

main isotopologue of acetylene are spin-1
2 particles and therefore, as Fermions,

obey Fermi-Dirac rules [189, 56, 191]. The 12C carbon atoms of 12C2H2, the

only isotopologue considered in this thesis, are spin-0 and so do not need to

be considered here.

The complete internal wavefunction of 12C2H2 is given by Φint =

Φelec Φrv Φns, where Φelec is the electronic wavefunction, Φrv is the rotation-

vibration wavefunction, and Φns is the nuclear-spin wavefunction.

The symmetry operation (p) (which is part of the D∞h(M) molecular sym-

metry (MS) group (see Section 4.1)) describes a permutation of identical par-

ticles; when applied to 12C2H2 it implies permutation of the two hydrogen

atoms. The total wavefunction must either be symmetric or antisymmetric

upon such a transformation. In the case of fermions, as for 12C2H2, it must

be antisymmetric. The permutation symmetry of the ground electronic state

is totally symmetric upon interchange of identical atoms and so the electronic

part of the wavefunction can be ignored for this situation.

Two nuclear wavefunctions of hydrogen exist; Ψ1/2 and Ψ−1/2 (where ±

gives the projection mI of the nuclear spin I = 1
2). There are four ways of

combining the two wavefunctions which represent the spin of the two H atoms

in 12C2H2:

Ψ
(1)
1/2Ψ

(2)
1/2, (3.1)
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Table 3.4: Allowed combinations of symmetry labels for ro-vibrational states

(including spin) of 12C2H2, where s = symmetric, a = antisymmetric, ‘Total’

is how the ro-vibronic wavefunction, including the nuclear spin, acts under

permutation symmetry.

u/g +/− Ro-vib. Nuclear spin Total

u + a Ortho a

u − s Para a

g + s Para a

g − a Ortho a

Ψ
(1)
1/2Ψ

(2)
−1/2 + Ψ

(1)
−1/2Ψ

(2)
1/2, (3.2)

Ψ
(1)
1/2Ψ

(2)
−1/2−Ψ

(1)
−1/2Ψ

(2)
1/2, (3.3)

Ψ
(1)
−1/2Ψ

(2)
−1/2, (3.4)

three of which are symmetric (ortho) and one which is symmetric (para) upon

permutation of the H nuclei.

If the ro-vibrational part of the wavefunction is antisymmetric under per-

mutation symmetry (resulting from a combination of g and − or u and +; see

Section 3.2), i.e. (p)Ψrv = (−1)Ψrv, then the nuclear spin state must be ortho

and if the ro-vibrational part of the wavefunction is symmetric (g,+ or u,−),

i.e. (p)Ψrv = (+1)Ψrv, then the nuclear spin state must be para (see Table

3.4). This ensures that the total wavefunction Φint = Φelec Φrv Φns is always

anti-symmetric (as Φelec is totally symmetric for 12C2H2).

The gns factors, also known as the nuclear-spin quantum numbers, enter

the intensity formula of rovibrational transitions (see Eq. 2.13; gns is 1 for A1g

and A1u (para) states and 3 for A2g and A2u (ortho) states in 12C2H2; as there is

no mixing between ortho and para states gns is the same for the upper and the
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lower state); thus, ortho transitions generally have three times the intensity of

para transitions. This is sometimes referred to as intensity alternation. It is

assumed that ortho and para states do not interconvert; such transitions are

very weakly allowed [194] but have yet to be observed for 12C2H2.

3.5 Selection Rules

The rigourous selection rules governing rotation-vibration transitions for a

symmetric linear molecule (molecular group D∞h(M)) are given by

∆J =±1 with e↔e or f↔ f , (3.5)

∆J =±0 with e↔ f (3.6)

J′+ J′′ 6= 0 (3.7)

u↔g (3.8)

The first two equations here correspond to the standard selection rule +↔−

for the dipole transitions in terms of the parities. A Q-branch (∆J = 0) is

only possible if there is a change in vibrational angular momentum during a

transition. This does not occur for Σ (K = 0) states, in which case only P and

R branches are possible (∆J =−1 and ∆J = +1, respectively).

3.6 Polyad Number

The polyad number of a molecule is typically used to group vibrational states

(v1,v2,v3,v4,v5, as defined in Section 3.1), with states in the same polyad

having approximately equal energies.

For acetylene the polyad number, P, is typically given [53] by:

P = 3v1 + 5(v2 + v3)+ v4 + v5 ≤ Pmax. (3.9)

The maximum value, Pmax, is used as a means to restrict the basis set employed

in variational calculations (see Section 8.4).
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3.7 Partition Function

As introduced in Section 2.3.2, the number density of a particular molecular

state as a fraction of the total number density of the molecular species is given

by the Boltzmann law in Eq. (2.15). The total internal partition function,

Q, is a sum over all molecular states, weighting each by their probability of

occupation at a given temperature, and therefore offers an indication of the

completeness of a calculated linelist at a particular temperature:

Q =
N

∑
i=1

gns
(i)(2J + 1)e

−c2Ẽi
T . (3.10)

Here, c2=hc
k is the second radiative constant, Ẽi is the energy term value of

each i molecular state (relative to the ground ro-vibronic state), T is the tem-

perature, gns
(i) is the nuclear statistical weight of each i molecular state, and

the sum is over all molecular states.

The total internal partition function, Q, is a product of the rotation-

vibration (QRV ) and electronic components (QE), however QE=1 in the ground

electronic state, so only the ro-vibrational components need to be taken into

account in the current work. An approximation is sometimes used whereby

the vibrational part of the internal partition function, QV , is estimated (which

assumes separation of the vibrational and rotational degrees of freedom) in

order to compute vibrational transition moment values. Different values of Q

and QV are given by different sources in Table 3.5. It should be noted that the

physics or atmospheric convention is for the ratio of the nuclear degeneracy

spin factors to be taken as 1:3 (para:ortho). This is the convention that is

typically employed in spectroscopy and is used throughout this thesis and in

Table 3.5. The astronomer convention uses 1
4 : 3

4 (para:ortho), which leads

to a factor of 4 difference in the partition function values (see, for example,

Ref. [195]).
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Table 3.5: Values of the total internal partition function Q and for the vibra-

tional partition function QV at 296 K for acetylene from various sources.

Year Reference Q QV

2017 [196] 414.03

2011 [195] 412.3

2000 [197] 412.525

2000 [198] 417.5 1.1774

1990 [199] 405.867



Chapter 4

The Symmetry of Linear

Molecules for Ro-vibrational

Applications

The use of molecular symmetry has applications in a range of fields, in-

cluding molecular spectroscopy and the construction of molecular wavefunc-

tions, ligand-field theory, material science, and electronic structure calcula-

tions [200, 201, 202, 203, 189]. The use of a symmetry-adapted basis set has

been shown to make calculations of ro-vibrational energies far more efficient by

reducing the size of the Hamiltonian matrix to be diagonalized [200], which is

important in ensuring that such calculations are computationally viable. Inten-

sity calculations are dependent on the symmetry of the ro-vibrational states,

mainly due to the selection rules imposed by the nuclear spin statistics associ-

ated with different irreducible representations [200] (see Section 3.4), and so a

full understanding of a molecule’s symmetry group and how to utilise its prop-

erties in numerical calculations is vital in the production of a high-temperature

linelist.

In this chapter a numerical application of linear-molecule symmetry prop-

erties, described by the D∞h point group, is formulated in terms of lower-order

Dnh symmetry groups with finite n. Character tables and irreducible repre-

sentation transformation matrices are presented for Dnh groups with arbitrary



4.1. Background: D∞h Symmetry Groups 62

n-values. The even-n Dnh group is subsequently used in the construction of

symmetry-adapted ro-vibrational basis functions for solving the Schrödinger

equations of acetylene in Section 7.1.2 (and can be used for general linear

molecules of D∞h point group symmetry).

Previous to Chubb et al. [55], the work of which is presented in this

chapter, it appears that no transformation matrices for D∞h had been re-

ported in the literature, although the corresponding character tables have

been published many times (see, for example Ref. [204]). Hegelund et al. [205]

have, however, described the transformation properties of the customary rigid-

rotor/harmonic-oscillator basis functions (see, for example, Refs. [189, 206,

207]) for Dnh point groups with arbitrary n > 3 (see also Section 12.4 of

Ref. [189]), which can be used in the formulation of transformation matrices.

This chapter is structured as follows. Section 4.1 gives an overview of the

rotational and vibrational symmetry classifications and groups for a centrosym-

metric linear molecule, Section 4.2 introduces the Dnh symmetry groups and

their correlation with D∞h, Section 4.3 introduces the concept of generating op-

erations, and Section 4.4 presents the corresponding irreducible-representation

transformation matrices.

4.1 Background: D∞h Symmetry Groups

For a centrosymmetric molecule such as acetylene, HCCH, the geometrical

symmetry of its equilibrium configuration is described by the D∞h point group,

which contains the following group elements:

D∞h = {E,C∞
ε ,σ

(ε/2)
v , i,Sπ+ε

∞ ,C(ε/2)
2 }. (4.1)

Here, E is the identity operation1, C∞
ε is a (right-handed) rotation of the

molecule by ε about the molecular z-axis (the axis along which all atoms are

aligned when a molecules is in its linear geometry), σ
(ε/2)
v is a reflection in a

1The effect of the identity operation is to “do nothing” and it is thus included as an

operation in all molecular symmetry groups.
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plane containing the molecular axis, i is the point group inversion operation2,

Sπ+ε
∞ is an improper rotation by π + ε about the molecular axis (with Sπ+ε

∞ =

C∞
εσh, where σh is a reflection in the xy plane), and C(ε/2)

2 is a rotation by π

about an axis perpendicular to the molecular axis [189]. As the angle ε can

take on any value from 0· · ·2π, it is evident that this group is of infinite order.

In contrast to the physical shape of a molecule on which the point group is

based, the molecular symmetry (MS) group is defined as one whose elements do

not change the energy of the molecule; more formally, whose elements commute

with the Hamiltonian of the molecule. It is derived from the full complete

nuclear permutation inversion (CNPI) group, which for 12C2H2 is:

{E,(12),(34),(12)(34),E∗,(12)∗,(34)∗,(12)(34)∗}, (4.2)

with 1 and 2 representing the hydrogen protons and 3 and 4 the carbon nuclei

and (i j) indicating a permutation of identical particles i and j (i, j =1 and 2 or

3 and 4 in this case). To form the MS group from Equation 4.2 all unfeasible

elements need to be removed (based on the principle of feasibility, first intro-

duced by Longuet-Higgins [208, 189]). For a centrosymmetric linear molecule,

such as acetylene, the unfeasible elements are (12), (34), (12)∗, and (34)∗. In

a more compact form, the permutation operator, (p), represents the simulta-

neous interchange of all pairs of identical nuclei about the molecular midpoint

[189]. E is the identity operation, E∗ is the spatial inversion operation, which

inverts the positions of all particles (nuclei and electrons) through the molec-

ular centre of mass, and (p)∗ = (p)E∗ = E∗ (p) is the permutation-inversion

operation [189].

The molecular vibrational states (assuming a totally symmetric singlet

electronic state) of a centrosymmetric linear molecule span the representations

of the D∞h point group of infinite order (Equation (4.1)), but the symmetry

properties of the combined rotation-vibration states must satisfy the nuclear-

statistics requirements and transform according to the irreducible representa-

2This operation is only present for centrosymmetric molecules. It is formally defined as

a rotation by π about the molecular z-axis, combined with a reflection in the xy plane.
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tions (irreps) of the finite-order molecular symmetry (MS) group, which is,

based on the above, defined as:

D∞h(M) = {E,(p),E∗,(p)∗}. (4.3)

The point group and molecular symmetry group for a linear molecule are

evidently not isomorphic to one another; one is of finite order and the other in-

finite. This makes them unique amongst other types of molecule; the geometric

symmetry at equilibrium structure of a rigid3 nonlinear molecule can be de-

scribed by a point group which is isomorphic to its molecular symmetry group.

Incidentally, the molecular symmetry group of a rigid linear centrosymmetric

molecule, D∞h(M), is isomorphic to the MS group of a rigid nonlinear cen-

trosymmetric molecule, C2v(M) (this is the MS group of, for example, H2O).

This can be verified using Longuet-Higgins’ principle of feasibility [208], and

holds for all chain molecules, irrespective of whether they have a linear or bent

equilibrium structure. The irreducible representations (irreps) of MS group

D∞h(M) are given in Table 4.1, with several alternative notations for the irre-

ducible representations given.

3In this context, a rigid molecule is defined as one whose vibration can be described as

oscillations around a single potential energy minimum, as is the case for acetylene.
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Table 4.1: Character table for the MS group D∞h(M). Γ1–Γ6 are several alterna-

tive notations for the irreducible representations of D∞h(M). Γ1 and Γ6 are the

most commonly used notations for 12C2H2 (and have been adopted throughout

this thesis). Γ3 is customarily used for C2v(M) and Γ5 is for C2h(M) (Table

A-8 of Ref. [189]). g and u stand for the German gerade (even) and ungerade

(odd), related to the permutation-inversion operation (p)∗. + or − parity are

determined by the spatial inversion operator E∗.

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 E (p) E∗ (p)∗

Σg
+ +s A1 A+ Ag A1g 1 1 1 1

Σu
+ +a B2 B+ Bu A2u 1 −1 1 −1

Σg
− −a B1 B− Bg A2g 1 −1 −1 1

Σu
− −s A2 A− Au A1u 1 1 −1 −1

For a rigid linear molecule, the infinite-order point group obviously pro-

vides a much more detailed symmetry description than the finite MS group.

Although the MS group provides the symmetry operations relevant for describ-

ing the ‘fully coupled’ ro-vibrational wavefunctions of a molecule, the point

group symmetry gives rise to useful information, in particular for the separate

vibrational, and rotational basis functions used to express the fully coupled

wavefunctions, and so it is often advantageous to employ the latter.

As seen in Section 3.4, the complete internal wavefunction of 12C2H2,

Φint, is subject to Fermi-Dirac statistics [189, 56, 191]. It was shown that

nuclear spin statistics require Φint to change sign under the operation (p) in

the D∞h(M) group elements of Eq. (4.3) in the case of 12C2H2. The nuclear-

spin wavefunction Φns does not depend on the spatial coordinates of the nuclei

and so it is invariant under the “geometrical” symmetry operations of the point

group D∞h. It is also invariant under MS group operation E∗, but it may have

its sign changed by (p). Thus, it can have Σg
+ or Σu

+ symmetry in D∞h(M)

(Table 4.1).
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Bunker and Papoušek [209] introduced the so-called Extended Molecular

Symmetry (EMS) Group which, for a centrosymmetric linear molecule, is iso-

morphic to the D∞h point group. The operations in D∞h(EM) can be written

as:

E(= E0),Eε ,(p)ε ,E∗ε ,(p)∗ε (4.4)

where the angle ε satisfies 0 6 ε < 2π. The effect of the elements of the EMS

group is much the same as those of the MS group, with the main difference

being that the EMS group operations also mimic a rotation by ε about the

molecular z-axis.

The irreducible representations of D∞h and D∞h(EM) are listed in Ta-

ble 4.2. It should be noted here that the point group inversion operation, i,

should be distinguished from the spatial inversion operation, E∗, which inverts

the positions of all particles (nuclei and electrons) through the molecular centre

of mass and is a part of the D∞h(M) MS group. i is only present for centrosym-

metric molecules, and gives the u/g label on vibronic states, while E∗ gives the

+/− parity label. Four of the irreps are one-dimensional: Σg
+, Σg

−, Σu
+, and

Σu
− and an infinite number are two-dimensional: Πg/u, ∆g/u, Φg/u, Γg/u, Hg/u,

Ig/u, . . .. In the alternative and more compact notation, the 2D irreps are given

by Eng and Enu, where n = 1,2, . . . ,∞. The rotational basis functions Φrot
J,k =

|J,k〉 span the irreducible representations of D∞h(EM) as given in Table 4.3.
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Table 4.2: Common character table for the point group D∞h and the Extended

Molecular Symmetry (EMS) group D∞h(EM), with the elements of each group

defined in the text.

D∞h(EM): E0 Eε · · · ∞Eε
∗ (12)π

∗ (12)∗π+ε · · · ∞(12)ε

D∞h: E 2C∞
ε · · · ∞σ

(ε/2)
v i 2Sπ+ε

∞ · · · ∞C(ε/2)
2

Σg
+, A1g: 1 1 · · · 1 1 1 · · · 1

Σu
+, A2u: 1 1 · · · 1 −1 −1 · · · −1

Σg
−, A2g: 1 1 · · · −1 1 1 · · · −1

Σu
−, A1u: 1 1 · · · −1 −1 −1 · · · 1

Πg, E1g: 2 2cosε · · · 0 2 2cosε · · · 0

Πu, E1u: 2 2cosε · · · 0 −2 −2cosε · · · 0

∆g, E2g: 2 2cos2ε · · · 0 2 2cos2ε · · · 0

∆u, E2u: 2 2cos2ε · · · 0 −2 −2cos2ε · · · 0

Φg, E3g: 2 2cos3ε · · · 0 2 2cos3ε · · · 0

Φu, E3u: 2 2cos3ε · · · 0 −2 −2cos3ε · · · 0

Γg, E4g: 2 2cos4ε · · · 0 2 2cos4ε · · · 0

Γu, E4u: 2 2cos4ε · · · 0 −2 −2cos4ε · · · 0

Hg, E5g: 2 2cos5ε · · · 0 2 2cos5ε · · · 0

Hu, E5u: 2 2cos5ε · · · 0 −2 −2cos5ε · · · 0
...

...
... · · ·

...
...

... · · ·
...
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Table 4.3: The irreducible representation Γ of D∞h(EM) spanned by the rota-

tional wavefunction |J,k〉 of a linear molecule in the absence of external electric

and magnetic fields. The irrep depends on k, the z-axis projection in units of

h̄, of the rotational angular momentum.

k Γ

0
(J even) Σg

+

(J odd) Σg
−

±1 Πg

±2 ∆g

±3 Φg
...

...

For a linear centrosymmetric molecule, both the rotational and vibrational

basis functions can be classified according to the irreps of the infinite-order

D∞h(EM). This group is defined such that the effect of the operations on the

vibrational coordinates are identical to those of the point group D∞h. It follows

from the discussion given above, however, that only the operations in the MS

group D∞h(M) (corresponding to ε = 0 for the operations in D∞h(EM)) are

relevant for determining the requirements of Fermi-Dirac and Bose-Einstein

statistics. The complete ro-vibrational Hamiltonian does not commute with

D∞h(EM) operations with ε > 0 [189], and therefore any ro-vibrational basis

function ΦJ,k,v,l must be invariant to them. It is seen from Table 4.2 that

consequently, ΦJ,k,v,l can only span one of the four irreducible representations

Σg
+, Σg

−, Σu
+, and Σu

− of the EMS group D∞h(EM). These four irreps, Σg
+,

Σg
−, Σu

+, and Σu
−, are also denoted e ortho, e para, f ortho and f para, in

the labelling scheme of Chapter 5. The correspondence depends on whether J

is even or odd and is given in Table 3.2.

The rotational and vibrational wavefunctions Φrot
J,k and Φvib

v,` , respectively,

are symmetry classified in D∞h(EM) and there are no restrictions as to their
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possible symmetries. However, the fact that the product function ΦJ,k,v,l must

transform according to a 1D irrep introduces restrictions on the possible com-

binations of Φrot
J,k and Φvib

v,` ; these restrictions limit the physically useful com-

binations to those with k = `. For example, the vibrational state ν5 (with

vibrational basis functions Φvib
v5=1,`=±1 of Πu symmetry in D∞h(EM)) of 12C2H2

can be combined with the Φrot
J,k rotational wavefunctions having (J,k) = (1,±1)

(and Πg symmetry) to produce three ro-vibrational combinations with sym-

metries Σu
+, Σu

− and Πu in D∞h(EM). However only the Σu
+ and Σu

− states

obey nuclear spin statistics and the Πu state must be discarded.

4.2 The Correlation of Dnh and D∞h Symmetry

Groups

Figure 4.1: A graphical abstract to represent the substitution of n (right) for

∞ (left) in the D∞h point group

As illustrated in Figure 4.1, D∞h is the geometrical symmetry group of

a smooth object, such a cylinder or centrosymmetric linear molecule, which

can be rotated about its principal axis an infinite number of times without

changing the apparent geometrical shape. The faces on either of its end are

also equivalent. Similarly, Dnh is the geometrical symmetry group of a regular

polygon with n vertices (i.e., a regular n-gon), whose upper and lower surfaces



4.2. The Correlation of Dnh and D∞h Symmetry Groups 70

are equivalent, so it can be rotated n times around its principal axis with

no observable change. D∞h can thus be thought of as the limiting case of

a progression of Dnh groups: D∞h = limn→∞ Dnh. As previously mentioned

above, a large component of the work presented in this thesis is to implement

an appropriate symmetry for the ro-vibrational basis functions employed in

TROVE calculations. However, owing to the infinitely many operations and

irreps of the D∞h point group, its use is impracticable. Consequently, D∞h is

approximated by Dnh with a suitably large arbitrary value of n. In order to do

this, and to find a suitable value for n, the correlation between Dnh and D∞h

must first be considered.

The symmetry operations of Dnh are listed in Table 4.4, with different

operations for n even and n odd. The difference in group structure and the

labelling of the irreps are caused by the fact that for n even, the point group

inversion i (as should be distinguished from the spatial inversion operation E∗

of the MS group) is present in Dnh, whereas for n odd it is not. Since i ∈

D∞h, in some sense an even-n Dnh is more similar to D∞h than an odd-n Dnh.

It could be argued that only even-n Dnh groups should be considered in the

limit of n→ ∞; this is the approach that has been taken in this work (see

Section 7.1.2).
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Table 4.4: Symmetry operations of the Dnh groups, for even and odd n. σh,

σv and σd represent reflections in planes perpendicular to the molecular axis,

containing the molecular axis, and bisecting the angle between a pair of C2 axes,

respectively. An improper rotation Sr
n is a rotation by r(2π

n ) (r = 1 . . .n− 2)

followed by a reflection in the plane perpendicular to the molecular axis and

containing the nuclear center-of-mass. Cr
n represents rotations by r(2π

n ), where

r = 1 . . .n−1. See Ref. [189] for further details on these symmetry operations.

Symmetry operation Number of operations Description

Even n:

E 1 Identity

Cr
n n−1 Rotations about the n-fold molecular axis

C′2/C′′2 n n rotations by π about axes

perpendicular to the molecular axis

i 1 Point group inversion

Sr
n n−2 Improper rotation (see caption)

σh 1 Horizontal reflection (see caption)

σv n/2 Vertical reflection (see caption)

σd n/2 Diagonal reflection (see caption)

Total: 4n

Odd n:

E 1 Identity

Cr
n n−1 Rotations about the n-fold molecular axis

C′2 n n rotations by π about axes

perpendicular to the molecular axis

Sr
n n−1 Improper rotation (see caption)

σh 1 Horizontal reflection (see caption)

σv n Vertical reflection (see caption)

Total: 4n

The character table for general Dnh of odd n (where n≥ 5; D3h is a special

case) is given in Table 4.5, and for even n (where n≥ 4; D2h is a special case)
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in Table 4.6. Table 4.5 shows that an even-n Dnh group has four 1D irreps

called A1g, A2g, A1u, and A2u and (n− 2) 2D irreps, of which half are called

Erg and the other half Eru (r = 1,2, . . . , n/2−1). All of these irreps correlate

with irreps of D∞h denoted by the same names as in Table 4.2. In addition,

the even-n Dnh group has another four 1D irreps called B1g, B1u, B2g, B2u.

These B-type irreps have no counterparts in D∞h and so basis functions of

these symmetries are unphysical in the context of approximating D∞h by Dnh,

and should be discarded. It was noted above that the point group inversion

operation i is contained in D∞h and in even-n Dnh, but not in odd-n Dnh (the

character under i gives the u/g label for ro-vibrational states). Table 4.7 gives

the correspondence between the labelling of irreps of odd-n Dnh, even-n Dnh

and D∞h.

Table 4.5: Character table for the Dnh group, for odd n (n≥ 5)a

Irrep k E 2Cr
n C′2 σh σv 2Sr

n

(r = 1 . . . n−1
2 ) (r = 1 . . . n−1

2 )

A′1 +1 +1 +1 +1 +1 +1

A′2 +1 +1 −1 +1 −1 +1

E ′k 1 +2 2cos( 2πkr
n ) 0 +2 0 2cos( 2πkr

n )

2
...

n−1
2

A′′1 +1 +1 +1 −1 −1 −1

A′′2 +1 +1 −1 −1 +1 −1

E ′′k 1 +2 2cos( 2πkr
n ) 0 −2 0 −2cos( 2πkr

n )

2
...

n−1
2

a For each value of r in 2Cr
n and 2Sr

n there exists two operations with the same rotation

angle and character; one clockwise and one anticlockwise. This is purely convention and an

alternative would be to use the operations Cr
n and Sr

n, with r = 1 . . .n−1, all clockwise.
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Table 4.6: Character table for the Dnh group, for even n (n ≥ 4). The C2

operation is included explicitly for even n here, though it can be contained

within the definition for Cr
n (when r = n

2); see the footnote of Table 4.5.

Irrep k E 2Cr
n C2 C′2 C′′2 i σh σv σd 2Sr

n

(r = 1 . . . n−2
2 ) (r = 1 . . . n−2

2 )

A1g +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

A2g +1 +1 +1 −1 −1 +1 +1 −1 −1 +1

B1g +1 −i − n
2 +1 −1 +1 − n

2 − n
2 + n

2 − in
2

B2g +1 −i − n
2 −1 +1 +1 − n

2 + n
2 − n

2 − in
2

Ekg 1 +2 2cos( 2πkr
n ) 2(−1)k 0 0 +2 2(−1)k 0 0 2cos( 2πkr

n )

2
...

n
2 −1

A1u +1 +1 +1 +1 +1 −1 −1 −1 −1 −1

A2u +1 +1 +1 −1 −1 −1 −1 +1 +1 −1

B1u +1 −i − n
2 +1 −1 −1 + n

2 + n
2 − n

2 + in
2

B2u +1 −i − n
2 −1 +1 −1 + n

2 − n
2 + n

2 + in
2

Eku 1 +2 2cos( 2πkr
n ) 2(−1)k 0 0 −2 2(−1)k+1 0 0 −2cos( 2πkr

n )

2
...

n
2 −1

The general formulation of the irreducible representations of Dnh for arbi-

trary n is outlined in Section 4.3 below.

4.3 Generating Operations of Dnh Groups

All point groups can be defined in terms of generating operations, from which

all operations in the group can be expressed as products of. An example in

terms of C3v point group operations can be found in Ref. [55]. Hegelund et

al. [205] give the generating operations for general molecular point groups,

including Dnh (for both n even and n odd), which are also given in Table 4.8.

Here, σh is a reflection in a horizontal plane (perpendicular to the n-fold axis),
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Table 4.7: The correspondence between the g/u (gerade/ungerade) notation

of the irreps of Dnh (even n) and the ′/′′ notation of the irreps of Dnh (odd

n), based on K (the absolute value of the projection, in units of h̄, onto the

molecule-fixed z-axis of the rotational angular momentum).

K Γ (even n) Γ (odd n) D∞h(EM)

0

A1g A
′
1 Σg

+

A1u A
′′
1 Σu

+

A2g A
′
2 Σg

−

A2u A
′′
2 Σu

−

> 0, even
Ekg E

′
k ∆g,Γg, Ig · · ·

Eku E
′′
k ∆u,Γu, Iu · · ·

> 0, odd
Ekg E

′′
k Πg,Φg,Hg · · ·

Eku E
′
k Πu,Φu,Hu · · ·
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i is the point group inversion, Cn is a rotation by 2π

n about the molecular z-axis,

and C(x)
2 is a rotation by π about the molecule-fixed x axis.

Table 4.8: Generating operations for the Dnh groups (n even and n odd).

Point group R+ R′+ R−

Dnh, n odd Cn σh C(x)
2

Dnh, n even Cn i C(x)
2

All operations in a Dnh group can be obtained as products involving three

generating operations which are conventionally given the notation of R+, R′+,

and R− (the + and − notation here are in reference to whether the signs of L

and K are kept the same (+) or change (−) under the action of the generating

operations on general ro-vibrational functions, Ψ
(V,L,J,K,m)
rv ).

In the process of expressing the elements of Dnh in terms of the generating

operations of Table 4.8, the following relations can be used:

σ
(xz) = C(x)

2 σh (n odd), and (4.5)

σ
(xz) = C(x)

2 Cn/2
n i (n even), (4.6)

with Cn/2
n denoting a rotation by π about the z axis.

When the transformation properties of an object under R+, R′+, and R− are

known, the transformation properties under all other operations in a Dnh point

group can be unambigously constructed. The characters under the generating

operations R+, R′+, and R− for irreps of the Dnh groups (odd and even n) are

given in Table 4.9.

4.4 Transformation Matrices of Dnh Groups

In practical applications of representation theory, such as the symmetry adap-

tation and description of ro-vibrational basis functions which are required for

the work of this thesis, it is not sufficient to have the irreducible-representation

characters of Table 4.9 only. The groups of matrices that constitute irreducible
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Table 4.9: Irreducible representations for the Dnh groups and their characters

under the generating operations R+, R′+ and R−.

Dnh E R+ R′+ R−

(n even) (= Cn) (= i) (= C(x)
2 )

A1g 1 1 1 1

A2g 1 1 1 −1

B1g 1 −1 1 1

B2g 1 −1 1 −1

Erg
a 2 2cos 2πr

n 2 0

A1u 1 1 −1 1

A2u 1 1 −1 −1

B1u 1 −1 −1 1

B2u 1 −1 −1 −1

Eru
a 2 2cos 2πr

n −2 0

Dnh E R+ R′+ R−

(n odd) (= Cn) (= σh) (= C(x)
2 )

A′1 1 1 1 1

A′2 1 1 1 −1

E ′r
b 2 2cos 2πr

n 2 0

A′′1 1 1 −1 1

A′′2 1 1 −1 −1

E ′′r
b 2 2cos 2πr

n −2 0

a r = 1, 2, . . . , n
2 −1. b r = 1, 2, . . . , n−1

2 .
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representations of the Dnh group with an arbitrary finite n-value are also re-

quired; as mentioned previously, these will differ for n even and n odd. For the

1D irreps (of type A and B, in the notation of Tables 4.2 and 4.9) the 1× 1

transformation matrices simply equal the character in Table 4.9 and, in gen-

eral, the characters of Tables 4.6 (n even) and 4.5 (n odd). For the 2D irreps

(of type E, in the notation of Table 4.2) 2× 2 matrices whose traces are the

characters in Tables 4.9, 4.6 and 4.5, are required. Once a set of irreducible-

representation transformation matrices are known for a particular symmetry

group, symmetrised basis functions (with transformation properties defined by

the irreducible-representation matrices) can be determined.

The transformation matrices for the generating operations for the Dnh

(n-even and n-odd) groups are given in Table 4.10. If all operations of the

Dnh group are formulated in terms of these generating operations then the

analogous matrix products of the transformation matrices of Table 4.10 can

be made in order to give the corresponding transformation matrices for all

operations of the Dnh group. It is seen that the rotational basis functions

|J,0〉 and (|J,K,+〉 , |J,K,−〉) generate g-type symmetries of Dnh only for n

even. This is because, as explained in Section 4.5 of Ref. [189], the point group

inversion i and its MS-group counterpart Ôi do not change the Euler angles,

i.e., the rotational coordinates. Consequently, the rotational functions are

invariant to these operations. The transformation matrices for u-type irreps

have also been added to Table 4.11, which can be thought of as generated by

functions (|J,K,±〉 |vu = 1〉, where |vu = 1〉 is the vibrational wavefunction for

the fundamental level of a (probably hypothetical) vibrational mode νu of A1u

symmetry.

The representation matrices are given in Table 4.11 for n even and in

Table 4.12 for n odd. These matrices can be used to symmetrise the basis sets

of centrosymmetric linear molecules in general nuclear-motion routines. This

has been fully implemented into TROVE (see Section 7.1.2), and used in the

ro-vibrational energy and intensity calculations of Chapter 8.
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Table 4.10: Transformation matrices, for the Dnh (n-even and n-odd) groups generated by the rotational basis functions |J,0,+〉

= |J,0〉 for K = 0 and (|J,K,+〉 , |J,K,−〉) for K > 0, with ε = 2π/n.

Generating functions Group operations

Dnh (n even): E R+ = Cn R′+ = i R− = C(x)
2

|J,0,+〉 1 1 1 1 |J,K,+〉

|J,K,−〉


 1 0

0 1


 cosKε −sinKε

sinKε cosKε


 1 0

0 1


 1 0

0 −1


Dnh (n odd): E R+ = Cn R′+ = σh R− = C(x)

2

|J,0,+〉 1 1 1 (−1)J |J,K,+〉

|J,K,−〉


 1 0

0 1


 cosKε −sinKε

sinKε cosKε


 (−1)K 0

0 (−1)K


 (−1)J 0

0 −(−1)J


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4.5 Chapter Summary

The Dnh and D∞h symmetry groups have been introduced in this chapter,

along with their correspondence to each other. Character tables, generating

operations and irreducible representation transformation matrices for Dnh of

general integer odd or even n have been presented. The implementation of

these symmetry groups in TROVE and a numerical example for 12C2H2 will

be presented in Section 7.1.2.
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Table 4.11: Irreducible representation transformation matrices of the

Dnh group for n even, generated by the rotational basis functions

(|J,K,+〉 , |J,K,−〉) for K > 0 [189]. ε = 2π

n , r is an integer used to identify

the group operations, and 1≤ K ≤ n
2 −1.

εr r EKg EKu

E


1 0

0 1




1 0

0 1



Cr
n rKε 1. ..n−1


cosεr −sinεr

sinεr cosεr




cosεr −sinεr

sinεr cosεr



C′2 2rKε 0. .. n
2 −1 (−1)K


cosεr sinεr

sinεr −cosεr

 (−1)K


cosεr sinεr

sinεr −cosεr



C′′2 (2r + 1)Kε 0. .. n
2 −1 (−1)K


cosεr sinεr

sinεr −cosεr

 (−1)K


cosεr sinεr

sinεr −cosεr



i


1 0

0 1



−1 0

0 −1



σh (−1)K


1 0

0 1

 −(−1)K


1 0

0 1



σv 2rKε 0. .. n
2 −1 (−1)K


cosεr sinεr

sinεr −cosεr

 −(−1)K


cosεr sinεr

sinεr −cosεr



σd (2r + 1)Kε 0. .. n
2 −1 (−1)K


cosεr sinεr

sinεr −cosεr

 −(−1)K


cosεr sinεr

sinεr −cosεr



S(r)
n rKε

1. .. n
2 − 1,

n
2 + 1. ..n−1a

(−1)K


cosεr −sinεr

sinεr cosεr

 −(−1)K


cosεr −sinεr

sinεr cosεr


ar = 0 and r = n/2 are omitted from this list because S(0)

n = σh and S(n/2)
n = i.
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Table 4.12: Irreducible representation transformation matrices of the Dnh

group for n odd, generated by the rotational basis functions (|J,K,+〉 , |J,K,−〉)

for K > 0 [189]. E ′K and E ′′K functions have even and odd K, respectively (Ta-

ble 4.7), and so the present table has been simplified accordingly. ε = 2π

n , r is

an integer used to identify the group operations, and 1≤ K ≤ n−1
2 .

εr r E ′K E ′′K

E


1 0

0 1




1 0

0 1



Cr
n rKε 1. ..n−1


cosεr −sinεr

sinεr cosεr




cosεr −sinεr

sinεr cosεr



C′2 rKε 0. ..n−1 (−1)J


cosεr sinεr

sinεr −cosεr

 (−1)J


cosεr sinεr

sinεr −cosεr



σh


1 0

0 1



−1 0

0 −1



σv rKε 0. ..n−1 (−1)J


cosεr sinεr

sinεr −cosεr

 (−1)J


cosεr sinεr

sinεr −cosεr



S(r)
n rKε 1. ..n−1


cosεr −sinεr

sinεr cosεr




cosεr −sinεr

sinεr cosεr





Chapter 5

MARVEL Analysis of the

Ro-vibrational Energy Levels of

12C2H2

Experimentally determined rotation-vibration energy levels provide an impor-

tant component of the calculations of ro-vibrational spectra in order to imple-

ment the semi-empirical methods that are typically employed by the ExoMol

group. This includes the refinement of the potential energy surface to experi-

mental data (see Section 9.2), the empirical basis set correction (EBSC), which

involves a shifting of band centres to experimental values (see Section 9.3), and

in the comparison of ab initio results to experimental data to enable a deter-

mination of accuracy, often termed “obs-calc”1 (see Chapter 8).

The work outlined in this chapter is based on the publication of Chubb

et al. [56] and constitutes the largest compilation and analysis of published

experimental data on rotation-vibration transitions for the ground electronic

states of the main isotopologue of acetylene, 12C2H2. 37,813 measured tran-

sitions from 60 publications are considered. The analysis has resulted in the

determination of 6013 ortho and 5200 para rotation-vibration energy levels

for 12C2H2 using the Measured Active Rotational-Vibrational Energy Levels

1This is shorthand for “observation minus calculation”, which is often shortened further

to “o-c”.
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(MARVEL) technique. The distinct networks linking ortho and para states

are considered separately, with 20,717 ortho and 17,096 para transitions veri-

fied. The MARVEL results are compared with alternative compilations based

on the use of effective Hamiltonians.

The underlying theory used for the MARVEL study is outlined in Sec-

tion 5.1. Section 5.2 presents and discusses the experimental sources used.

Results are given in Section 5.3 and discussed in Section 5.4, along with com-

parisons with recent empirical databases from Amyay et al. [46] (henceforth

16AmFaHe), Lyulin and Campargue [45] (henceforth 17LyCa) and Lyulin and

Perevalov [44] (henceforth 17LyPe), which builds on their earlier work [210],

all of which only became available while the present study was being under-

taken. This is followed by a summary in Section 5.7 and the structure of the

supplementary data in Section 5.8, which is included as part of the publication

associated with this chapter [56].

5.1 MARVEL Theory

The Measured Active Rotational-Vibrational Energy Levels (MARVEL) pro-

cedure [211, 212] is based on the theory of spectroscopic networks [213, 214] and

is principally based on earlier work by Flaud et al. [215] and Watson [216, 217].

MARVEL can be used to critically evaluate and validate experimentally-

determined transition wavenumbers and uncertainties collected from the lit-

erature. It inverts the wavenumber information to obtain accurate energy

levels with an associated uncertainty. MARVEL has been successfully used

to evaluate the energy levels for molecules, such as 12C2 [218], 48Ti16O [219],

water vapour [220, 221, 222, 223, 224], H+
3 [225], H2D+ and D2H+ [226], 14NH3

[227, 228], and 12C2H2
16O [229]. To be useful for MARVEL, measured tran-

sitions must have an associated uncertainty and be assigned. This means that

each energy level resulting from the study must possess a unique set of quan-

tum numbers. It should be noted that while MARVEL requires uniqueness

it does not require these quantum numbers to be strictly correct, or indeed
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even meaningful, beyond obeying rigorous selection rules; these assignments

simply act as labels for each state. Nevertheless, it greatly aids comparisons

with other data if sensible values are used.

The theory behind the MARVEL procedure will be summarised here,

with a full account given in Refs. [211, 212, 215]. The input to the MARVEL

algorithm is the set of experimental data which has been collected from the

literature, and should include the transition wavenumber (line position), asso-

ciated uncertainty, and labelled upper and lower energy levels. It also needs

to contain a unique reference tag, so that a line of data relating to a particular

transition is identifiable. Using this information, a series of linear equations is

built, with each equation of the form:

σi = E j1(i)−E j2(i), (5.1)

where σi is the transition wavenumber and E j1(i) and E j2(i) are the associated

upper and lower energy levels, respectively. The measurement uncertainity

associated with a given transition is given by δi. All terms are typically in

units of wavenumbers (cm-1). Generally, the number of transitions, Nt is much

larger than the number of energy levels to be determined, Nl, leading to an

over-determined system of linear equations. This series of linear equations is

converted to matrix form and a weighted least squares fitting method is used to

determine the experimental values of the energy levels, Eexp
j , with the weights,

gi, initially related to the uncertainties in the measurements, δi, via

gi =
1

δ 2
i
. (5.2)

As the procedure iterates, a robust weighting algorithm is used [216], with the

weights updated each time:

gi =
1

δ 2
i + α∆2

i
. (5.3)

Here, α is a positive number (≤ 1
3), chosen for the given problem [211], and ∆i is

the difference between the original measured transition, σi, and the computed
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transition:

∆i = σi− (Eexp
j1(i)−Eexp

j2(i)). (5.4)

This leads to an uncertainty associated with each determined energy level;

if ∆i > δi, then MARVEL outputs suggestions for updates to the measured

uncertainty δi, based on ∆i. If this is an acceptably small increase then the new

value should replace the original in the MARVEL input and the procedure

run again. If ∆i � δi, then it is likely that the transition has either been

misassigned or the line position is incorrect; in this case the line in the input

file should be removed (a minus sign infront of the transition will indicate

that MARVEL should ignore that line of data) and MARVEL should be run

again in order to get a new set of experimentally determined energy levels and

associated uncertainties. The data set is said to be self-consistent when ∆i≤ δi,

for all i, i.e. when all transitions and deduced energy levels in the data-set are

in agreement with one another.

5.1.1 Quantum Number Labelling

The quantum number assignments that were used in the MARVEL analysis

are all outlined in Section 3.1 and summarised in Table 3.1. Sections 3.3, 3.4,

3.2 and 3.5 give further details. It should be noted that for a linear molecule

such as acetylene, K is also equal to the total vibrational angular momentum

quantum number, |L|= |`4 +`5| (within the (3N−5) approach; see Section 7.1),

and therefore K is sometimes also referred to as the total vibrational angular

momentum. It was therefore only necessary to include one of these two labels,

K, in the MARVEL analysis. All other quantum number labels in the MAR-

VEL analysis are given in the same order as in Table 3.1. The assignments

were taken from the original data sources where possible, with any exceptions

noted in Section 5.2.1 and 5.2.2: particular reference should be made to the

general comments (1a) and (1b) in Section 5.2.2. The symmetry labels of the

vibrational states (Σ
+/−
u/g , Πu/g, ∆u/g, . . . ; see Section 3.2) have been added

to the end of the output energy files (see Table 5.5 and the supplementary

material of the publication associated with this chapter [56]) to further aid



5.2. Experimental Sources 86

comparisons of the data against other sources.

5.2 Experimental Sources

The spectroscopy of acetylene has long been studied in the laboratory and a

large number of experimentally determined transition frequencies can therefore

be found in the literature for the main isotopologue, 12C2H2. As part of this

study a rigorous and comprehensive search for all useable spectroscopic data

for 12C2H2 was undertaken. This includes the transition frequency (in cm−1)

and associated uncertainty, along with quantum number assignments for both

the upper and lower energy states. A unique reference label is assigned to each

transition, which is required for MARVEL input. This reference indicates the

data source, table (or page) and line number that the transition originated

from. The data source tag is based on the notation employed by the IUPAC

task group on water [221, 230] with an adjustment discussed below. The

associated uncertainties were taken from the experimental data sources where

possible, but it was necessary to increase many of these in order to achieve

consistency with the same transition in alternative data sources. As noted by

Lyulin and Perevalov [210], these sources often provide overall uncertainties

for the strongest lines in a vibrational band which may underestimate the

uncertainty associated with some or all of the weaker lines. It is also possible

that some transitions have been misassigned or are due to blended lines, which

will have a shifted transition wavenumber value. Herman and co-workers have

presented a number of reviews of the behaviour of acetylene in X 1Σ+
g ground

electronic state [52, 53, 54], which were particularly useful in this collation

of data. Besides summarising the status of rotation-vibration spectroscopy of

the system, these reviews also give insight into the internal dynamics of the

system.

60 sources of experimental data were considered in this MARVEL study.

Two of the data compilations mentioned in the introduction to this chapter

[46, 45] contain data from multiple other sources, some of which were not
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Table 5.1: Extract from the MARVEL input file for the ortho transitions. The

full file is supplied as part of the supplementary information of the associated

publication [56]. All transition energy term values and uncertainties (unc) are

in units of cm−1.

Energy Unc Upper assignment Lower assignment Ref

1248.2620 0.0005 0 0 0 1 1 1 -1 0 34 e ortho 0 0 0 0 0 0 0 0 35 e ortho 00Vander_l1

1252.8546 0.0005 0 0 0 1 1 1 -1 0 32 e ortho 0 0 0 0 0 0 0 0 33 e ortho 00Vander_l2

1257.4230 0.0005 0 0 0 1 1 1 -1 0 30 e ortho 0 0 0 0 0 0 0 0 31 e ortho 00Vander_l4

1261.9694 0.0005 0 0 0 1 1 1 -1 0 28 e ortho 0 0 0 0 0 0 0 0 29 e ortho 00Vander_l6

1266.4970 0.0005 0 0 0 1 1 1 -1 0 26 e ortho 0 0 0 0 0 0 0 0 27 e ortho 00Vander_l8

1271.0098 0.0005 0 0 0 1 1 1 -1 0 24 e ortho 0 0 0 0 0 0 0 0 25 e ortho 00Vander_l10

1275.5122 0.0005 0 0 0 1 1 1 -1 0 22 e ortho 0 0 0 0 0 0 0 0 23 e ortho 00Vander_l11

directly available. Data taken from these compilations are given a tag based

on that used in the compilation along with the original reference given in

Table 5.2. After processing, 59 sources were used in the final data set. The

data from more recent papers are generally provided in digital format, but

those from some of the older papers had to be processed through digitalisation

software, or even manually entered in the worst cases. After digitalisation the

data were converted to MARVEL format; an example of the input file in this

format is given in Table 5.1; the full file can be found in the supplementary

data of the associated publication [56].

Table 5.2 gives a summary of all the data sources used in this work, along

with the wavelength range, number of transitions, number of vibrational bands,

the approximate temperature of the experiment and comments, which can be

found in Section 5.2.1. Table 5.3 gives those data sources which were considered

but not used, with comments on the reasons. The reference label given in these

tables corresponds to the unique labels in the MARVEL input files, given in

the supplementary data of Ref. [56] and illustrated in the last column of Table

5.1. As transitions do not occur between ortho and para states, they form two

completely separate components of the main spectroscopic network, with no

links between them. All input and output files supplied in the supplementary
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data to the associated publication of this work [56] are split into either ortho

or para.

Table 5.2: Data sources used in this study with wavelength range,

numbers of transitions and approximate temperature of the exper-

iment. A/V stands for the number of transitions analysed/verified.

’RT’ stands for room temperature. See section 5.2.1 for the notes.

Tag Ref. Range (cm−1) A/V Bands Temp Note

09YuDrPe [231] 29-55 20/20 5 RT

16AmFaHe kab91 [232] 61-1440 3233/3233 47 RT

16AmFaHe amy10 [233] 63-7006 1232/1232 36 RT

11DrYu [234] 85-92 20/20 7 RT

17JaLyPe [235] 429-592 627/627 9 RT

81HiKa [236] 628-832 684/684 5 RT (3a)

93WeBlNa [237] 632-819 1610/1609 13 RT (3b)

00MaDaCl [238] 644-820 77/77 1 RT

01JaClMa [239] 656-800 355/355 4 RT

50BeNi [240] 671-4160 500/0 13 RT (3c)

16AmFaHe gom10 [241] 1153-1420 27/27 3 RT

16AmFaHe gom09 [242] 1247-1451 66/66 8 RT

00Vander [243] 1248-1415 64/64 2 RT

16AmFaHe amy09 [91] 1253-3422 3791/3777 57 Up to 1455 K (3d)

03JaMaDa [177] 1810-2235 486/486 14 RT

03JaMaDab [244] 3207-3358 109/109 2 RT

16AmFaHe jac02 [180] 1860-2255 150/150 3 RT

72Pliva [192] 1865-2598 1016/1015 15 RT

16AmFaHe ber98 [245] 1957-1960 19/19 1 RT (3e)

16AmFaHe jac07 [246] 2515-2752 148/148 3 RT

16AmFaHe pal72 [247] 2557-5313 42/42 3 RT

16AmFaHe vda93 [248] 2584-3364 499/499 5 RT

93DcSaJo [249] 2589-2760 372/372 3 RT

82RiBaRa [87] 3140-3399 1789/1788 21 RT and 433 K

16AmFaHe sarb95 [250] 3171-3541 401/401 8 RT

06LyPeMa [251] 3182-3327 167/167 13 RT
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Table 5.2: Data sources used in this study with wavelength range,

numbers of transitions and approximate temperature of the exper-

iment. A/V stands for the number of transitions analysed/verified.

’RT’ stands for room temperature. See section 5.2.1 for the notes.

Tag Ref. Range (cm−1) A/V Bands Temp Note

16AmFaHe man05 [252] 3185-3355 288/288 5 RT

16AmFaHe sara95 [253] 3230-3952 424/424 5 RT

16AmFaHe ber99 [254] 3358-3361 21/21 1 RT (3e)

16AmFaHe lyub07 [255] 3768-4208 668/668 8 RT

16AmFaHe gir06 [256] 3931-4009 91/91 10 RT

16AmFaHe dcu91 [257] 3999-4143 251/251 6 RT

72BaGhNa [258] 4423-4791 472/408 8 RT (3f)

16AmFaHe lyua07 [259] 4423-4786 440/440 8 RT

16AmFaHe lyu08 [183] 5051-5562 320/320 7 RT

16AmFaHe kep96 [260] 5705-6862 1957/1957 30 RT

17LyCa [45] 5852-8563 4941/4941 108 RT (3g)

16AmFaHe rob08 [261] 5885-6992 568/568 20 RT

07TrMaDa [262] 6299-6854 546/546 13 RT (3h)

16AmFaHe lyu09 [263] 6300-6666 89/89 5 RT

16KaNaVa [264] 6386-6541 19/19 2 RT (3i)

16AmFaHe kou94 [265] 6439-6629 73/73 1 RT

15TwCiSe [266] 6448-6564 135/135 2 RT

02HaVa [267] 6448-6685 271/271 4 RT

77BaGhNa [268] 6460-6680 860/859 15 RT (3j)

05EdBaMa [269] 6472-6579 41/41 1 RT

13ZoGiBa [270] 6490-6609 37/37 1 RT

00MoDuJa [271] 6502-6596 36/36 1 RT

96NaLaAw [272] 6502-6596 36/36 1 RT

16AmFaHe amy11 [273] 6667-7868 2259/2256 79 RT (3k)

15LyVaCa [184] 7001-7499 2471/2471 29 RT (3l)

09JaLaMa [274] 7043-7471 233/233 4 RT

02VaElBr [275] 7062-9877 626/626 11 RT (3m)

16LyVaCa [276] 8283-8684 627/627 14 RT (3n)

17BeLyHu [277] 8994-9414 432/432 11 RT
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Table 5.2: Data sources used in this study with wavelength range,

numbers of transitions and approximate temperature of the exper-

iment. A/V stands for the number of transitions analysed/verified.

’RT’ stands for room temperature. See section 5.2.1 for the notes.

Tag Ref. Range (cm−1) A/V Bands Temp Note

89HeHuVe [278] 9362-10413 657/657 14 RT (3o)

93SaKa [279] 12428-12538 91/73 1 RT (3p)

03HeKeHu [181] 12582-12722 60/60 1 RT

92SaKa [280] 12904-13082 216/212 3 RT (3q)

94SaSeKa [281] 13629-13755 53/53 1 <RT (223 K) (3r)

Total 29-13755 37813/37206

Table 5.3: Data sources considered but not used in this work.

Tag Ref. Comments

16AmFaHe abb96 [282] 0 transitions in 16AmFaHe; data not available in original paper.

16AmFaHe eli98 [283] 0 transitions in 16AmFaHe; data not available in original paper.

72Plivaa [284]: Energy levels only

02MeYaVa [285] No suitable data

01MeYaVa [286] No suitable data

99SaPeHa [287] No suitable data

97JuHa [288] No suitable data

93ZhHa [289] No suitable data

93ZhVaHa [290] No suitable data

91ZhVaKa [291] No suitable data

13SiMeVa [292] No suitable data

83ScLeKl [293] No assignments given
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5.2.1 Comments on the Experimental Sources in Ta-

ble 5.2

(3a) 81HiKa [236] has an apparent misprint in column 2 of their Table 6:

the R(19) line should be 780.2601 cm−1 not 790.2601 cm−1, as confirmed by

01JaClMa [239], and in column 5 of their Table 4: the Q(3) line should be

728.9148 cm−1 not 729.9148 cm−1, also confirmed by 01JaClMa [239].

(3b) 93WeBlNa page14 l38 from 93WeBlNa [237] is not consistent with other

data sources. It was marked in the original dataset as a transition that the

authors did not include in their analysis and so was removed from the present

dataset.

(3c) 50BeNi [240] was deemed too unreliable to use in the final dataset: data

are directly contradicted by other sources.

(3d) Many of the transitions included from 16AmFaHe amy09 [91] are not

duplicated in any other source. While this means they represent a valuable

source of data, and have thus been kept in the MARVEL dataset, the fact

that there is no other experimental data to back them up means they should

be treated with some degree of caution. As stated in the original paper,

modelling such a high temperature region is a challenge. There are a small

number of transitions - 14 out of 3791 - that do not match those from other

data sources and were removed from the present dataset.

(3e) Note that 16AmFaHe ber98 [245] and 16AmFaHe ber99 [254] are Raman

spectra and so the transitions do not follow the selection rules detailed in

Section 3.5 of this paper.

(3f) 72BaGhNa [258] has a band labelled (0013100)1 - (0001100)1 (see Sec-

tion 3.1 for this quantum number labelling definition) which is not consistent

with other data sources. After MARVEL analysis it was found that the

band labelled (0104011)1 - (0001100)1 gave energies consistent with those

labelled (0013100)1 - (0001100)1 in other data sources (16AmFaHe lyua07,

16AmFaHe lyu08). Bands including (0104011)1 are not present in other data

sources. The labelling of these bands were swapped accordingly. All other
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bands from this dataset were included, with the exception of the single tran-

sition labelled 72BaGhNa table2 c2 l32, which was not consistent with other

datasets.

(3g) 17LyCa [45] provides a collection of data recorded in Grenoble using

cavity ring down spectroscopy from several papers. 15LyVaCa (FTS15 in the

notation of 17LyCa) [184], 16LyVaCa (FTS16) [276] and 17BeLyHu (FTS17)

[277] were all already included as separate files in the present dataset and so

were removed from the 17LyCa [45] dataset. The remaining data, CRDS13

[294], CRDS14 [295] and CRDS16 [296] are all included in the final dataset

with the tag ’17LyCa’. See comment (3l).

(3h) 07TrMaDa [262] contained a band labelled 2ν2 + (ν4 + 3ν5)0
+. `4 and `5

were assigned as 1 and -1 respectively, to be consistent with the labelling of

16AmFaHe kep96.

(3i) Full data for 16KaNaVa [264] was provided in digital format from the

corresponding author (private communication, Juho Karhu).

(3j) 77BaGhNa table3 l205 of 77BaGhNa [268] does not fit with the same

transition in two other sources.

(3k) 16AmFaHe amy11 [273] includes a band ((1000066)6 - (0000000)0 ) which

has transitions from J = 0 to J = 10,11,12. These are not physical and so were

removed from the dataset. There is one other transition which was removed

which was found to be inconsistent with the other datasets.

(3l) There were previously some differences in the authors approach to la-

belling levels for 15LyVaCa [184] and 17LyCa [45], see comment (3g) (Alain

Campargue, private communication). This was partly to allow all bands to

have unique labelling, as duplicate labels were provided in 15LyVaCa as in-

dicated by ∗∗ or ∗ superscripts. These bands were relabelled to fit with other

data sources, for example 16AmFaHe amy11 [273]. The authors of 17LyCa

have since made amendments to their published dataset (Alain Campargue,

private communication). Table 5.4 summarises the changes in labelling be-

tween 15LyVaCa, the current version of 17LyCa FTS15 (see supplementary
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data of [45]) and this work.

(3m) 02VaElBr [275] is missing one band labelling in the footnote to their

Table 3. The missing label for the penultimate level is I = (v1v2v3v4
l4v5

l5)K =

(0020011)1. Full data was provided in digital format from the corresponding

author (Jean Vander Auwera, private communication).

(3n) 16LyVaCa [276] has duplicate lines in the (1110000)0 band. Those which

were inconsistent with other sources were removed and thus not included in

the final data set. It is possible that they should be re-assigned.

(3o) The assignments given for the band labelled (0122020)0 - (0000000)0 in

89HeHuVe [278] require the upper state to have the parity of an f-level, which

is unphysical if both `4=0 and `5=0. There can be no e/ f splitting in this case.

It was assumed that this upper state should be labelled (012222−2)0. These

reassigned transitions were amended and included in the present dataset.

(3p) Table 1 of 93SaKa [279] has duplicates for the e↔e transitions in the

(2021100)1 - (0000011)1 vibrational band. Those which are inconsistent with

other sources were removed and thus not included in the final data set.

(3q) 92SaKa [280] contains some duplicate lines which have been assigned

identical quantum numbers. Those which are inconsistent with other sources

were removed and thus not included in the final data set.

(3r) 94SaSeKa [281] gives two tables of data but only one is assigned with

vibrational quantum numbers, so data from the other table was not considered

as part of this work.

Table 5.4: Changes in labelling between 15LyVaCa [184],

17LyCa FTS15 [45] and this work, in the form (v1v2v3v4
l4v5

l5)K .

See comment (3l) in the text.

15LyVaCa 17LyVa FTS15 This work

(020421−1)1∗∗ (0113100)1 (0204110)1

(0113100)1 (0204011)1 (0113100)1

(1102011)1 (1102011)1 (1102110)1
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(110221−1)1∗∗ (020223−1)1 (1102011)1

(110221−1)1∗ (110221−1)1 (110221−1)1

5.2.2 General Comments

A number of general issues had to be dealt with before consistent networks

could be obtained.

(1a) 16AmFaHe [46] released a collation and analysis of experimental

data in the middle of the collation and analysis stage of this work. The entire

database was formatted into MARVEL format so it could subsequently be

run through the software and combined with the other experimental sources

in the MARVEL dataset. Some of the experimental sources featured in the

16AmFaHe database paper had already been collated and formatted to MAR-

VEL format prior to its publication. These are 03JaMaDa [177], 91KaHeDi

[232], 06LyPeMa [251], 07LyPeGu [259], 82RiBaRa [87], 02VaElBr [275] and

00MoDuJa [271]. The data included in the present study come from the orig-

inal datasets for these papers and not from 16AmFaHe. A few of the sources

that were cited in 16AmFaHe were not included in the final dataset of this

work. There were 0 transitions in 16AmFaHe from Refs. [282] (abb96), [283]

(eli98) or [234] (drou11); the data for Ref. [234] were taken from the original

paper (see 11DrYu in Table 5.2), but there were no data obviously available in

the original papers for the other two sources. The quantum number labelling

was kept consistent with that of 16AmFaHe as much as possible (see comment

(1b) for an exception).

(1b) Many of the `4 and `5 assignments were either inconsistent between

different sources, were not given in the original data (often only the to-

tal K = |`4 + `5| is given), or were inconsistent between data in the same

dataset. For example, the bands with upper energies labelled (v1v2v3v`4
4 v`5

5 )K

= (0002∗1∗)1, (1102∗1∗)1 or (0102∗1∗)1 in 16AmFaHe. Using simple combina-

tion differences, with the known lower value and given transition wavenumber,

there was found to be more than one value for the upper energy. It is assumed
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that this duplication of quantum numbers for different states is down to the

different method of analysis used in 16AmFaHe, which does not require a com-

pletely unique set. For example, for the upper level (110221−1)1, J=2, e, there

are two transitions which give as upper energy level of 7212.93 cm−1 (from

16AmFaHe kep96) and three that give 7235.29 cm−1 (from 16AmFaHe vda02

and 16AmFaHe rob08). These same two energies can be found in multiple

other sources (07TrMaDa, 15LyVaCa, 77BaGhNa, 02VaElBr), but the `4 and

`5 assignment was inconsistent for states of the same upper energy. The

decision was made to batch them together and assign the first energy level

(7212.94 cm−1 in this example) as (110221−1)1 and the second (7235.29 cm−1

in this example) as (1102011)1. The same logic was applied to other bands

with K = |`4 + `5|=1.

(1c) The e/ f notation (see Section 3.3) was mostly specified in experimental

papers, but some required additional investigation in order to assign them

in such a way as to be consistent with other papers. The c/d notation in

Ref. [192], for example, is analogous to the e/ f notation used in this work.

(1d) All transitions which were considered but not processed in the final

dataset are labelled with ct at the end of the reference and have a minus

sign in front of the transition frequency, at the start of the file. MARVEL

software ignores any line with a negative wavenumber.

(1e) The ortho/para notation was often not specified in the experimental

papers, but can easily be determined via the logic of Section 3.4.

5.2.3 Other Comments

The following are sources of the acetylene data in the HITRAN database

up to HITRAN-2012 ([244, 132, 297, 298]): 16AmFaHe gom09 [242], 16Am-

FaHe gom10 [241], 96NaLaAw [272], 05EdBaMa [269], 16AmFaHe lyua07

[259], 16AmFaHe jac07 [246], 16AmFaHe jac09 [274], 00Vander [243], 02HaVa

[267], 03JaMaDab [244], 16AmFaHe kab91 [232], 72Pliva [192], 03JaMaDa

[177], 82RiBaRa [87], 16AmFaHe vda93 [248].
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Additional data included in HITRAN-2016 [176], which was released after

the work undertaken in this Chapter, are: 16LyPe [210], 11DrYu [234], 17Ja-

LyPe [235] (with 17LyCa [45] under consideration for future inclusion [176]).

5.3 Results

The MARVEL website (http://kkrk.chem.elte.hu/marvelonline) has a

version of MARVEL which can be run online. The variable NQN (number of

quantum numbers) is 11 in the case of acetylene, given in Table 3.1. These are

required for both the lower and upper levels, as illustrated in Table 5.1.

All energies are measured from the zero point energy (ZPE). This is the en-

ergy of the ground ro-vibrational state, which is given a relative energy of 0 and

is included in the para set of energy levels. The ortho set of energies therefore

needs a ‘magic number’ to be added to all the MARVEL ortho-symmetry en-

ergies. Here the magic number was taken as the ground vibrational (0000000)0,

J = 1 state of 16AmFaHe [46] who determined the value 2.3532864 cm−1, see

Table 5.7 below. The output for the ortho energies in the supplementary data

of [56], and the extract of the output file in Table 5.5, all have this magic

number added for the main spectroscopic network. The main spectroscopic

network in the para output does not require a magic number as it contains

the ground ro-vibrational level, (0000000)0, J = 0. There are a small number

(284 for ortho and 119 for para) of energy levels which are not joined to the

main network. If more experimental transitions became available in the future

it would be possible to link these to the main network.

A total of 37,813 transitions were collated and considered (20,717 ortho

and 17,096 para) from the data sources detailed in Section 5.2. Of those 607

were found to be inconsistent with others (353 ortho and 254 para) and thus

removed from the final data set, leaving a total of 37,206 transitions used as

input into MARVEL (20,364 ortho and 16,842 para). A plot of energy as a

function of rotational quantum number, J, was made for each vibrational band

as a check that quantum numbers had been assigned consistently. Figures 5.1

http://kkrk.chem.elte.hu/marvelonline
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Table 5.5: Extract from the MARVEL output file for the ortho transitions.

The full file is supplied as part of the supplementary information to the asso-

ciated publication [56]. All energy term values and uncertainties are in units

of cm−1.

Assignment Energy Unc Num Trans u/g Symmetry

0 0 0 0 0 0 0 0 1 e ortho 2.35329 0.00003 204 g sigma_g_plus

0 0 0 0 0 0 0 0 3 e ortho 14.11952 0.00002 289 g sigma_g_plus

0 0 0 0 0 0 0 0 5 e ortho 35.29793 0.00002 306 g sigma_g_plus

0 0 0 0 0 0 0 0 7 e ortho 65.88710 0.00002 298 g sigma_g_plus

0 0 0 0 0 0 0 0 9 e ortho 105.88501 0.00002 306 g sigma_g_plus

0 0 0 0 0 0 0 0 11 e ortho 155.28899 0.00002 306 g sigma_g_plus

0 0 0 0 0 0 0 0 13 e ortho 214.09576 0.00002 306 g sigma_g_plus

0 0 0 0 0 0 0 0 15 e ortho 282.30144 0.00002 310 g sigma_g_plus

0 0 0 0 0 0 0 0 17 e ortho 359.90150 0.00002 294 g sigma_g_plus

0 0 0 0 0 0 0 0 19 e ortho 446.89078 0.00003 282 g sigma_g_plus

0 0 0 0 0 0 0 0 21 e ortho 543.26353 0.00002 274 g sigma_g_plus

0 0 0 1 1 0 0 1 1 e ortho 614.04436 0.00018 98 g pi_g

0 0 0 1 1 0 0 1 2 f ortho 618.77696 0.00013 133 g pi_g
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and 5.2 show this for each vibrational band, for the ortho and para states

respectively. Figures 5.3 and 5.4 illustrate the ortho and para components of

the principal spectroscopic network, respectively. The nodes are energy levels

and the edges the transitions between them, with the colours representing Num

Trans, the number of transitions linked to each energy level. These figures were

produced using algorithms from gephi, an open source network visualisation

software [299]. Different algorithms can be used to present these networks in a

variety of ways. Figure 5.5, for example, gives alternative representations of the

structure of the experimental spectroscopic network. These figures highlight

the intricate relationships between different energy levels and illustrate how the

variety of sources collated in this work link together. If transition intensities

were to be included as weights in the spectroscopic network it could aid in the

determination of transitions which should preferentially be investigated in new

experiments [213].
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Figure 5.1: MARVEL energy levels (cm−1) as a function of rotational quan-

tum number, J, for all the vibrational energy bands in the ortho component

of the principal spectroscopic network analysed in this paper.
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Figure 5.2: MARVEL energy levels (cm−1) as a function of rotational quan-

tum number, J, for all the vibrational energy bands in the para component of

the principal spectroscopic network analysed in this paper.
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Figure 5.3: A representation of the Ortho component of the principal spectro-

scopic network of 12C2H2 produced using MARVEL input data.
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Figure 5.4: A representation of the Para component of the principal spectro-

scopic network of 12C2H2 produced using MARVEL input data.
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Figure 5.5: Alternative ortho (left) and para (right) components of the spec-

troscopic network of 12C2H2 produced using MARVEL input data.

Table 5.6 gives the vibrational (J=0) energies resulting from the MAR-

VEL analysis, with associated uncertainty, vibrational assignment and the

number of transitions (Num Trans) which were linked to the particular energy

level. The higher the number of transitions the more certainty can be given

to the energy value. See comment (3o) of Section 5.2.1 relating to the band

(012222−2)0 which may not have the correct assignment.

Table 5.6: Vibrational energy levels (cm−1) from the MARVEL

analysis of 12C2H2.

(v1v2v3v`4
4 v`5

5 )K e/ f State MARVEL Energy (cm−1) Uncertainty (cm−1) Num Trans

(0000000)0 e para 0 0.00005 85

(0002000)0 e para 1230.39030 0.00028 10

(000111−1)0 e ortho 1328.07000 0.00016 19

(000111−1)0 f para 1340.55068 0.00078 9

(0000020)0 e para 1449.11236 0.00059 10

(0100000)0 e para 1974.31662 0.00300 1

(000311−1)0 e ortho 2560.59000 0.00100 3

(000222−2)0 e para 2648.01447 0.00200 1

(000113−1)0 e ortho 2757.80000 0.00095 3

(0000040)0 e para 2880.22008 0.00200 1

(010111−1)0 e ortho 3281.90000 0.00087 5
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(0010000)0 e ortho 3294.84000 0.00095 4

(010111−1)0 f para 3300.63559 0.00384 2

(1000000)0 e para 3372.83899 0.00800 1

(010311−1)0 e ortho 4488.84000 0.00060 2

(0012000)0 e ortho 4508.01000 0.00133 4

(010222−2)0 f ortho 4599.77000 0.00195 2

(001111−1)0 e para 4609.34105 0.00295 3

(001111−1)0 f ortho 4617.93000 0.00254 4

(100111−1)0 e ortho 4673.63000 0.00089 3

(100111−1)0 f para 4688.84649 0.00570 1

(010113−1)0 e ortho 4710.74000 0.00900 1

(0010020)0 e ortho 4727.07000 0.00060 3

(1000020)0 e para 4800.13729 0.00030 1

(020111−1)0 e ortho 5230.23000 0.00500 1

(0110000)0 e ortho 5260.02000 0.00166 2

(010313−1)0 e ortho 5893.26000 0.00500 1

(100113−1)0 e ortho 6079.69000 0.00186 2

(0010040)0 e ortho 6141.13000 0.00500 1

(0112000)0 e ortho 6449.11000 0.00300 1

(1102000)0 e para 6513.99145 0.00400 1

(1010000)0 e ortho 6556.46000 0.00005 4

(110111−1)0 e ortho 6623.14000 0.00596 2

(0110020)0 e ortho 6690.58000 0.00600 1

(2000000)0 e para 6709.02119 0.00186 2

(1100020)0 e para 6759.23908 0.00500 1

(0114000)0 e ortho 7665.44000 0.00500 1

(0022000)0 e para 7686.07895 0.00100 1

(020422−2)0 e para 7707.27769 0.00200 1

(1012000)0 e ortho 7732.79000 0.00265 4

(020333−3)0 e ortho 7787.32000 0.00500 1

(002111−1)0 e ortho 7805.00000 0.00094 3

(110311−1)0 e ortho 7816.01000 0.00500 1

(101111−1)0 f ortho 7853.28000 0.00600 1

(1010020)0 e ortho 7961.82000 0.00383 3

(200111−1)0 e ortho 7994.39000 0.00129 2

(200111−1)0 f para 8001.20409 0.00494 2
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(2000020)0 e para 8114.36288 0.00185 3

(1100040)0 e para 8164.55403 0.00400 1

(1110000)0 e ortho 8512.06000 0.00021 3

(120111−1)0 e ortho 8556.59000 0.00500 1

(120111−1)0 f para 8570.32289 0.00500 1

(2100000)0 e para 8661.14909 0.00500 1

(0300040)0 e para 8739.81449 0.00500 1

(0310000)0 e ortho 9151.73000 0.00500 1

(0030000)0 e ortho 9639.86000 0.00772 2

(1112000)0 e ortho 9668.16000 0.00772 2

(012222−2)0 f ortho 9741.62000 0.01500 1

(012111−1)0 e ortho 9744.54000 0.01500 1

(2010000)0 e ortho 9835.17000 0.00772 2

(1030000)0 e ortho 12675.70000 0.00050 1

(3010000)0 e ortho 13033.30000 0.00500 1

(2210000)0 e ortho 13713.80000 0.00300 1

5.4 Comparison to Other Derived Energy

Levels

Table 5.7 compares the rotational energy levels of this work for the vibrational

ground state, which are determined up to J = 69, with those obtained by 16Am-

FaHe [46] from an effective Hamiltonian fit to the observed data. In general

the agreement is excellent. However, for the highest few levels with J ≥ 55 dif-

ferences are found which are significantly larger than the uncertainties of this

work; the resulting levels are systematically below those of 16AmFaHe. This

suggests that the effective Hamiltonian treatment used by 16AmFaHe becomes

unreliable for these high J levels. It should be noted that data relating to these

highly excited levels originated from 16AmFaHe amy9, a high temperature ex-

periment which has not been reproduced; see comment (3d), Section 5.2.1. It

is interesting to note that a further comparison with rotational energies extrap-

olated as part of 17LyPe’s ASD-1000 spectroscopic databank [44], also given

in Table 5.7, yields differences of approximately the same magnitude but, in
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contrast, consistently lower than this work.

Table 5.7: Comparison of pure rotational levels from the present

MARVEL analysis of 12C2H2 with those of 16AmFaHe [46] and

17LyPe [44].

J This work Uncertainty 16AmFaHe Difference 17LyPe Difference State

1 2.35329 0.00003 2.353286417 0.00000 2.3533 0.00001 ortho

2 7.05982 0.00003 7.059820210 0.00000 7.0598 -0.00002 para

3 14.11952 0.00002 14.119523294 0.00001 14.1195 -0.00002 ortho

4 23.53228 0.00003 23.532278547 0.00000 23.5322 -0.00008 para

5 35.29793 0.00002 35.297929811 0.00000 35.2978 -0.00013 ortho

6 49.41629 0.00003 49.416281896 -0.00001 49.4161 -0.00019 para

7 65.88710 0.00002 65.887100587 0.00000 65.8869 -0.00020 ortho

8 84.71012 0.00002 84.710112648 -0.00001 84.7098 -0.00032 para

9 105.88501 0.00002 105.885005832 0.00000 105.8846 -0.00041 ortho

10 129.41144 0.00003 129.411428888 -0.00001 129.4110 -0.00044 para

11 155.28899 0.00002 155.28899157 0.00001 155.2885 -0.00049 ortho

12 183.51727 0.00003 183.517264652 -0.00001 183.5167 -0.00057 para

13 214.09576 0.00002 214.095779933 0.00002 214.0951 -0.00066 ortho

14 247.02403 0.00003 247.024030258 0.00000 247.0233 -0.00073 para

15 282.30144 0.00002 282.301469525 0.00003 282.3007 -0.00074 ortho

16 319.92751 0.00003 319.927512702 0.00000 319.9266 -0.00091 para

17 359.9015 0.00002 359.901535847 0.00004 359.9006 -0.0009 ortho

18 402.22287 0.00003 402.22287612 0.00001 402.2219 -0.00097 para

19 446.89078 0.00003 446.890831804 0.00006 446.8898 -0.00098 ortho

20 493.90464 0.00003 493.904662324 0.00002 493.9036 -0.00104 para

21 543.26353 0.00002 543.263588267 0.00006 543.2625 -0.00103 ortho

22 594.96668 0.00004 594.966791406 0.00011 594.9657 -0.00098 para

23 649.01328 0.00003 649.013414717 0.00014 649.0123 -0.00098 ortho

24 705.40237 0.00004 705.402562408 0.00019 705.4015 -0.00087 para

25 764.13315 0.00003 764.133299944 0.00015 764.1322 -0.00095 ortho

26 825.20439 0.00004 825.204654067 0.00026 825.2037 -0.00069 para

27 888.61531 0.00003 888.615612828 0.00031 888.6147 -0.00061 ortho

28 954.36496 0.00005 954.365125617 0.00017 954.3642 -0.00076 para

29 1022.45167 0.00003 1022.452103183 0.00044 1022.4513 -0.00037 ortho

30 1092.87513 0.00005 1092.875417676 0.00029 1092.8747 -0.00043 para
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31 1165.63343 0.00004 1165.633902667 0.00048 1165.6333 -0.00013 ortho

32 1240.72592 0.00017 1240.726353188 0.00043 1240.7259 -0.00002 para

33 1318.15099 0.00011 1318.151525765 0.00054 1318.1512 0.00021 ortho

34 1397.90769 0.00023 1397.908138445 0.00045 1397.9080 0.00031 para

35 1479.99435 0.00007 1479.994870843 0.00053 1479.9949 0.00055 ortho

36 1564.40979 0.00026 1564.410364167 0.00057 1564.4105 0.00071 para

37 1651.15189 0.00017 1651.153221265 0.00134 1651.1535 0.00161 ortho

38 1740.22038 0.00037 1740.222006657 0.00163 1740.2225 0.00212 para

39 1831.61393 0.00026 1831.615246582 0.00132 1831.6159 0.00197 ortho

40 1925.33058 0.00074 1925.331429031 0.00085 1925.3322 0.00162 para

41 2021.36757 0.00043 2021.369003793 0.00144 2021.3699 0.00233 ortho

42 2119.72439 0.0006 2119.726382499 0.00199 2119.7273 0.00291 para

43 2220.4006 0.00057 2220.401938666 0.00134 2220.4029 0.00230 ortho

44 2323.39201 0.00127 2323.394007739 0.00200 2323.3950 0.00299 para

45 2428.69912 0.00135 2428.70088714 0.00177 2428.7018 0.00268 ortho

46 2536.31702 0.00103 2536.320836316 0.00382 2536.3217 0.00468 para

47 2646.25026 0.00128 2646.252076785 0.00182 2646.2527 0.00244 ortho

48 2758.49217 0.00142 2758.492792187 0.00062 2758.4931 0.00093 para

49 2873.03874 0.00194 2873.041128336 0.00239 2873.0411 0.00236 ortho

50 2989.89046 0.00175 2989.895193269 0.00473 2989.8947 0.00424 para

51 3109.04649 0.00148 3109.05305730 0.00657 3109.0519 0.00541 ortho

52 3230.50478 0.00124 3230.512753073 0.00797 3230.5108 0.00602 para

53 3354.26378 0.00224 3354.272275619 0.00850 3354.2694 0.00562 ortho

54 3480.32661 0.0025 3480.329582411 0.00297 3480.3256 -0.00101 para

55 3608.67187 0.0025 3608.682593419 0.01073 3608.6772 0.00533 ortho

56 3739.32523 0.00118 3739.329191172 0.00396 3739.3223 -0.00293 para

57 3872.2553 0.00208 3872.267220814 0.01193 3872.2585 0.00320 ortho

58 4007.49264 0.0017 4007.494490165 0.00185 4007.4836 -0.00904 para

59 4144.99542 0.00118 4145.008769784 0.01335 4144.9955 0.00008 ortho

60 4284.80143 0.00181 4284.807793029 0.00636 4284.7918 -0.00963 para

61 4426.8772 0.00154 4426.889256124 0.01206 4426.8701 -0.00710 ortho

62 4571.24409 0.00142 4571.25081822 0.00673 4571.2281 -0.01599 para

63 4717.87442 0.00142 4717.890101462 0.01569 4717.8635 -0.01092 ortho

64 4866.79028 0.00232 4866.804691055 0.01441 4866.7736 -0.01668 para

65 5017.97095 0.00168 5017.992135336 0.02119 5017.9561 -0.01485 ortho

66 5171.43923 0.00366 5171.449945837 0.01072 5171.4085 -0.03073 para
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Figure 5.6: Differences between the energy term values given in 17LyCa [45]

and this work as a function of rotational angular momentum quantum number,

J.

67 5327.14526 0.00195 5327.175597358 0.03034 5327.1280 -0.01726 ortho

69 5645.38676 0.003 5645.420139428 0.03338 5645.3585 -0.02826 ortho

The supplementary data from 17LyCa [45] contains lower energy levels,

frequency and assignments, from which upper energy levels can be calculated.

Figure 5.6 gives the differences between the energies given in 17LyCa and this

work as a function of J. The vast majority are within 0.005 cm−1. Note that

the difference in labelling of some bands has been taken into account when

comparisons are made (see comment (3l) in Section 5.2.1 and comment (1b)

in Section 5.2.2).

The energy levels given as supplementary data in annex 5 of 16AmFaHe

[46] are separated into polyads which are characterised by a small number

of quantum numbers; Nrmv = 5v1 + 3v2 + 5v3 + v4 + v5, J, e/ f symmetry and

u/g symmetry. As there are more than one state defined by these quantum

numbers, the only comparison that was possible to make was to match these

and find the closest energy value within these bounds. As such, one cannot
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be certain that bands have been matched correctly. 17LyCa compared what

they could against 16AmFaHe’s data but also could not find a reliable way to

determine unambiguously which energy of each polyad block corresponds to

their energy levels. Figure 5.7 gives the difference between the energies in this

work and those matched with 16AmFaHe as a function of rotational angular

momentum quantum number, J. 6160 out of the 11,154 energies differ by less

than 0.01 cm−1. However, this leaves 4994 energies with a difference of higher

than 0.01 cm−1. 2176 of these energies also appear in 17LyCa, so a comparison

could be made between the three. Only 7 of the energies in the 17LyCa dataset

are closer to 16AmFaHe than this work, and of those all are within 0.02 cm−1

with this work.

It should be noted, however, that the differences between this work and

16AmFaHe are largest for those energy levels with a low value of Num Trans

(the number of transitions that link the energy state to other energies within

the dataset); see figure 5.8. The vast majority of energy levels which only have

one transition are not in the 17LyCa dataset. Many of these transitions came

from the data source 16AmFaHe amy09; see comment (3d) in Section 5.2.1. It

would be of use to have more experimental data on transitions to these levels

in order to confirm their validity. The entire band (012222−2)0 has differences

of over 900 cm-1 in comparison to the matched values in 16AmFaHe. This indi-

cates that this band has been misassigned (see comment (3o) in Section 5.2.1)).

It is uncertain currently as what it should be reassigned to. This band has

been excluded from figures 5.7 and 5.8.

It should be made clear, as mentioned above, that those energy levels

present in the input data which are only linked to the main spectroscopic

network by one transition should be treated with caution; this is given as a

parameter in the last column of the output files included in the supplementary

data of Ref. [56]. It can be used, along with the uncertainties, as an indication

of the reliability of each energy level. MARVEL only processes data given as

input; it does not extrapolate to higher excitations.
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Figure 5.7: Deviations of energy levels in cm−1 between this work and 16Am-

FaHe [46] as a function of rotational angular momentum quantum number, J.

Different colours represent different designations of e/ f and u/g.



5.5. Comments and Updates Subsequent to the MARVEL Analysis 110

0 5 10 15
Num Trans

0

1

2

3

4

5

6

D
if

fe
re

nc
e 

(c
m

-1
)

Figure 5.8: Deviations of energy levels in cm−1 between this work and 16Am-

FaHe [46] as a function of the number of transitions that link to the energy

level in the present dataset.

5.5 Comments and Updates Subsequent to

the MARVEL Analysis

A recent very high accuracy lamb-dip study was undertaken by Tao et al.

[300] into the ν1 + 3ν3 band. This same band was observed using high ac-

curacy measurements by Liu et al. [301], a data source which was missed in

the original MARVEL study. Inclusion of the data from these studies in

the MARVEL data would give a slightly different set of energy levels for the

ν1 +3ν3 band, and alter the corresponding uncertainties. The only data for the

ν1 + 3ν3 band which was included in the current MARVEL study was taken

from 03HeKeHu [181], which, as the authors of Ref [300] point out, is likely

to be less accurate than the measured values of Refs [301] and [300]. Further

investigation into 03HeKeHu [181] shows that the line positions of their Ta-
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ble 1 were actually calculated from spectroscopic constants based on previous

studies, rather than measured directly. It is therefore apparent that these lines

in the MARVEL dataset should be replaced with those from Liu et al. [301].

Tao et al. [300] compare their derived energy levels to those of Chubb et al.

[56] and find an average difference of about 0.01cm-1. The energy levels in

the supplementary data of Chubb et al. [56] will therefore be off by approxi-

mately this amount for the ν1 +3ν3 band. MARVEL studies typically need to

be updated periodically as new experimental data is published, and there are

plans for an online MARVEL database for this reason. 12C2H2 is expected

to be re-analysed in due course, and studies which were missed in the original

analysis such as Refs. [300, 301] will be included. Comparison to variational

data, which were not available at the time of the original 12C2H2 MARVEL

analysis, will also allow potentially misassigned transitions to be removed from

the MARVEL dataset, and may help currently unpublished and unassigned

data to be assigned. It should be noted that when only spectroscopic constants

are provided, such as is the case for Ref. [302], this data cannot be used in a

MARVEL study.

5.6 The MARVEL Analysis of H2
32S

A MARVEL analysis was also recently conducted for H2
32S, as detailed in

Chubb et al. [143]. A total of 44 325 measured experimental rovibrational

transitions of H2
32S from 31 publications were considered; 3969 ortho and 3467

para energy levels were determined as a result of this MARVEL analysis, as

illustrated in Figure 5.9. Work is underway to update the existing ExoMol

AYT2 states file and linelist based on the energy levels obtained as a result of

this MARVEL study, outlined in Ref. [143].
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Figure 5.9: Representations of the ortho (left) and para (right) components of

the experimental spectroscopic network of H2
32S produced using MARVEL

input data.

5.7 Chapter Summary

A total of 37,813 measured experimental transitions of 12C2H2 from 60 publica-

tions were considered in this work. From this 6013 ortho and 5200 para energy

levels were determined using the MARVEL technique. These results were

compared with alternative compilations based on the use of effective Hamilto-

nians. The resulting energy levels are being used in the process for calculating

a high-accuracy, high-temperature linelist for acetylene (see Section 9.2).

A significant part of this work was performed in collaboration with pupils

from Highams Park School in London, as part of a project known as ORBYTS

(Original Research By Young Twinkle Students) [142]. The MARVEL studies

of H2
32S [143] (Section 5.6) and 48Ti16O [219] were also performed as part of the

ORBYTS project and further studies on other key molecules will be published

in due course, involving high-school students from the UK, Australia, and

Hungary. A paper discussing the experiences of performing original research

in collaboration with school children can be found elsewhere [141].
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5.8 Supplementary Data

Please refer to the web version of Ref. [56] for access to the supplementary data.

There are four files provided, as listed in Table 5.8. The column definitions

are given in Table 5.9 for files 1 and 2 (MARVEL input files) and Table 5.10

for files 3 and 4 (MARVEL output files).

Table 5.8: Supplied supplementary data files.

File Name

1 MARVEL_ortho_transitions_input.txt

2 MARVEL_para_transitions_input.txt

3 MARVELenergylevels_ortho_output.txt

4 MARVELenergylevels_para_output.txt
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Table 5.9: Definition of columns in files 1 and 2.

Column Label Description

1 Energy (cm−1) Transition wavenumber

2 Uncertainty (cm−1) Associated uncertainty

Upper assignments:

3 v1 CH symmetric stretch (σ+
g )

4 v2 CC symmetric stretch (σ+
g )

5 v3 CH antisymmetric stretch (σ+
u )

6 v4 Symmetric (trans) bend (πg)

7 `4 Vibrational angular momentum associated with v4

8 v5 Antisymmetric (cis) bend (πu)

9 `5 Vibrational angular momentum associated with v5

10 K =|`4 + `5|, total vibrational angular momentum

11 J Rotational angular momentum

12 e/ f Symmetry relative to the Wang transformation (see Section 3.3)

13 ortho/para Nuclear spin state (see Section 3.4)

Lower assignments:

14 v1 CH symmetric stretch (σ+
g )

15 v2 CC symmetric stretch (σ+
g )

16 v3 CH antisymmetric stretch (σ+
u )

17 v4 Symmetric (trans) bend (πg)

18 `4 Vibrational angular momentum associated with v4

19 v5 Antisymmetric (cis) bend (πu)

20 `5 Vibrational angular momentum associated with v5

21 K =|`4 + `5|, total vibrational angular momentum

22 J Rotational angular momentum

23 e/ f Symmetry relative to the Wang transformation (see Section 3.3)

24 ortho/para Nuclear spin state (see Section 3.4)

25 Ref Unique reference label (see Section 3.1)
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Table 5.10: Definition of columns in files 3 and 4.

Column Label Description

1 v1 CH symmetric stretch (σ+
g )

2 v2 CC symmetric stretch (σ+
g )

3 v3 CH antisymmetric stretch (σ+
u )

4 v4 Symmetric (trans) bend (πg)

5 `4 Vibrational angular momentum associated with v4

6 v5 Antisymmetric (cis) bend (πu)

7 `5 Vibrational angular momentum associated with v5

8 K =|`4 + `5|, total vibrational angular momentum

9 J Rotational angular momentum

10 e/ f Symmetry relative to the Wang transformation (see Section 3.3)

11 ortho/para Nuclear spin state (see Section 3.4)

12 Energy (cm−1) MARVEL energy assignment

13 Uncertainty (cm−1) MARVEL uncertainty

14 Num Trans The number of transitions in the dataset which link to this state

15 u/g symmetry See Section 3.2

16 Symmetry label See Section 3.2



Chapter 6

The Singularity Issue for Linear

Molecules

As will be shown in Section 6.3, some special consideration is required to handle

the singularities1 which would occur if standard Hamiltonians and number of

internal coordinates are used in ro-vibrational calculations of linear molecules.

Two general options exist: (i) the so-called (3N−6)-approach, which involves

using the same form of the kinetic energy operator as in the non-linear case,

while modifying the form of the wave function (more specifically, the basis set

of functions used to represent the wave function of the system) and (ii) the

so-called (3N−5)-approach, according to which the form of the kinetic energy

operator (KEO) is modified by treating one of the rotations as part of the

internal ‘vibrational’ modes, making 3N− 5 in total (where N is the number

of atoms).

In the first (3N−6) approach, it is necessary to carefully choose the form

of the basis functions to ensure that when the wave function is acted on by

the singular KEO of the system it cancels the singularity. A popular choice

which is used in WAVR4 [303], DVR3D [34] and many other works [304, 305,

306, 307, 308, 38, 309, 310, 311, 312, 313, 314, 315] is the use of angular basis

functions which include Legendre polynomials, such as spherical harmonics.

1In this context, singularity refers to terms which become infinite due to a zero in the

denominator.
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An alternative form of the wave function for linear triatomic molecules was

developed by Refs. [316], [317], which is not restricted to the use of spherical

polar coordinates. This idea was originally formulated for triatomics but has

been extended in this work for tetratomic molecules; see Section 7.2.

WAVR4 is an example of a computational method for ro-vibrational cal-

culations capable of treating linear four-atomic molecules within the 3N− 6

approach [303, 318] which uses finite basis representation (FBR) for the angu-

lar coordinates and a mixed FBR-DVR (where DVR stands for Discrete Vari-

able Representation, see e.g. Refs. [34, 48]) basis for the radial motion. While

accurate at low excitations of rotational energy, it is currently too computa-

tionally demanding to make it viable for use up to highly rotationally excited

states [43, 319]. WAVR4 has been used to calculate the ro-vibrational energy

levels and spectra of acetylene, up to rotational excitation J = 1 [303, 43] (with

extrapolations to higher rotational excitations [43]). As stated in the papers,

the program was specifically designed to deal with wide amplitude motion and

isomerisations; the isomerisation from acetylene to vinylidene is expected to

occur at around 15,000 cm-1 above the acetylene ground state [40].

DVR3D is a code used by the ExoMol project which utilises the DVR

(Discrete Variable Representation) method, based on Gauss-Jacobi and Gauss-

Laguerre quadrature [34, 48], in the modelling of the ro-vibrational spectra of

triatomic molecules and is capable of successfully handling linear molecules

such as CO2 [20, 36]. It is currently not suitable for dealing with linear

molecules of more than three atoms.

The second (3N−5) approach involves choosing appropriate coordinates

to represent a linear molecule which do not lead to singular terms in the KEO.

One of the best known examples of such a 3N−5 ro-vibrational Hamiltonian

was published by Watson in 1968 [32], which uses normal coordinates and is

still an important basis for a large amount of related work until the present

day [320, 321, 322, 323, 324]. Its foundation is found in techniques developed

by Ref. [325] for treating linear triatomic molecules in a doublet-Π electronic
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state and the work by Refs. [326], [327], [325], in which the Hamiltonian is built

in the classical form and transformed to the corresponding quantum operator

form via the Podolsky trick [328] and employing the Eckart conditions [329].

An alternative form of the Hamiltonian, appropriate for linear molecules, was

subsequently published by Watson [330], which deals with the angular momen-

tum around the linear axis differently to the standard non-linear case. There

are similarities here with the method that is employed in Section 7.1; the Euler

angle describing rotation about the z-axis, i.e. χ (see Fig. 6.1), becomes unde-

fined for a linear molecule, and so this rotational motion is effectively treated

as vibrational instead.

6.1 Nuclear-Motion Routine TROVE

As aforementioned, TROVE (Theoretical ROVibrational Energies) [50, 51]

is the principal software package for calculating the ro-vibrational spectra of

medium to large (typically four atoms or more) polyatomic molecules as part

of the ExoMol project. The nuclear motion Schrödinger equation and its so-

lution were introduced in Section 2.3, which will be briefly mentioned here.

The focus of this chapter, however, will primarily be on the construction of

the kinetic energy operator (KEO), which is typically carried out numerically

in TROVE, requiring no analytical pre-derivation. It is the construction of

the KEO, when implemented in the same way as for non-linear molecules,

which causes numerical issues for ro-vibrational calculations involving linear

molecules.

For a reader interested in learning the in-depth, step-by-step process of

running TROVE for ro-vibrational energy calculations of general polyatomic

molecules, the TROVE manual [331] provides an excellent starting point. In

summary, calculations in TROVE are performed sequentially, with the option

to save a number of checkpoint files in order to be read back in during subse-

quent stages of the calculation, often necessary in order to make the process

computationally viable. The potential energy, dipole moment and kinetic en-
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ergy functions are all expanded as Taylor series and truncated at a specified

order, with the potential energy and dipole moment functions given as input,

and the kinetic energy function generated numerically on-the-fly. Basis sets are

built from primitive 1D functions, processed through a double layer contraction

scheme, and used to solve the vibrational (J = 0) problem. The resulting vibra-

tional eigenfunctions can subsequently be used in the construction of a basis

set for the J > 0 calculations. Making use of this J = 0 representation makes

ro-vibrational calculations in TROVE far more efficient. See Section 7.1 for

more details.

6.2 Ro-vibrational Calculations in TROVE

Ro-vibrational energies, Erv, and wave-functions, Ψrv, are obtained us-

ing TROVE as a solution of the Schrödinger equation within the Born-

Oppenheimer (B-O) approximation,

ĤrvΨrv = ErvΨrv, (6.1)

where Ĥrv is the ro-vibrational Hamiltonian operator of the molecular system.

Solving this variationally can be highly computationally demanding, especially

for polyatomic molecules, with a general increase in time for systems with

more atoms. With the B-O approximation comes the concept of potential

energy surfaces; the Schrödinger equation should be solved for the motions

of the nuclei moving in the potential created by the electrons, as described

in Section 2.3. The nuclear Hamiltonian operator, Ĥ is a sum of the kinetic

energy operator and potential energy function,

Ĥ = T̂ +V. (6.2)

Note that the rv subscript will be dropped from now on, but focus is still on

ro-vibrational operators, wavefunctions, and energy levels. In TROVE, these

operators are expanded as a Taylor series around the minimum of the potential

energy surface (i.e. the equilibrium geometry) or, alternatively, around a non-

rigid configuration (for example, the “umbrella” motion that is known to occur
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in NH3 [332]), in terms of a suitable set of internal coordinates, ξi. For example,

in the case of the potential energy function [50]:

V (ξξξ ) = ∑
i, j,k,...

fi jk...ξ
i
1ξ

j
2 ξ

k
3 · · · , (6.3)

where fi jk... are expansion coefficients. This is appropriate as long as only the

region around one minimum of the system is being considered, as is the case

for C2H2 (the isomerisation of acetylene to vinylidene is not considered here).

Typically this expansion is truncated around the 6th or 8th order term. A more

in depth account of this can be found in Chapter 8 (see also Ref. [50]).

6.3 Construction of the Kinetic Energy Oper-

ator in TROVE

In order to fully understand why an amendment is required for calculations

involving linear molecules using TROVE, it is necessary to look at the method

used to solve for the ro-vibrational energies of non-linear molecules. Though

the variational method of TROVE is specifically considered here, the conclu-

sions are general enough to be applicable to other nuclear motion programs.

The minimum number of coordinates required to describe the motions of

any general molecule is 3N, where N is the number of atoms in the system:

for a non-linear molecule this breaks down as 3 to describe the position of

the center of mass of the molecule (which is also the center of the molecular

frame with respect to the laboratory frame (Figure 6.1)) and 3 to describe the

orientation of this frame (typically Euler angles in conjunction with the Eckart

conditions [333]; see Figure 6.1), leaving M = 3N−6 = 6 variables to describe

the internal, vibrational motions of the molecule, i.e. the stretches, bends and

dihedrals (see e.g. Figure 6.2). For linear molecules, this is not necessarily the

case, as will be seen below.
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Figure 6.1: The Euler angles describing the orientation of the molecular (x,y,z)

axis (red) from the laboratory (X ,Y,Z) axis (black). Here, θ is the angle

between the Z and z axes, φ is the angle from X to the projection of z on

the X −Y plane, and χ is the angle between from ON (purple) to the y-axis

(where O is the origin of both axes and ON defines the node line, which is the

intersection of the X−Y and the x−y planes. ON is also perpendicular to both

the z and Z axes. χ is therefore the azimuthal angle about the z-axis).

Figure 6.2: The geometry of HCCH as described using 3N−6 internal curvi-

linear coordinates ξξξ (R, r1, r2, θ1, θ2 and τ)

The form of the KEO used in TROVE [50], T̂ , is given by

T̂ =
1
2

M+3

∑
λ ,µ=1

p̂†
λ

Gλ µ(ξξξ )p̂µ +U(ξξξ ), (6.4)
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in terms of vibrational coordinates, ξξξ = {ξ1...ξM}, angular momentum oper-

ators of the form p̂λ=1...M+3 = {−ih̄ ∂
/

∂ξ1 . . .− ih̄ ∂
/

∂ξM, Ĵx, Ĵy, Ĵz} (the mo-

menta operators conjugate to the internal coordinates, along with three, x, y,

z, components of the total angular momentum operator, Ĵ), and the pseudopo-

tential function, U(ξξξ ). M is the number of internal (vibrational) degrees of

freedom, typically 3N−6 = 6 for non-linear molecules.

Gλ µ(ξξξ ) is a kinetic factor which is also known as the kinetic energy G-

matrix, typically of dimensions M + 3, corresponding to the total number of

ro-vibrational degrees of freedom. There is coupling between the rotational

and vibrational motion, but the translational motion is always separable and

so can be removed from these calculations. If this were not the case then nu-

clear motion calculations would be unattainably difficult, as this translational

motion essentially leads to a continuous spectrum (see e.g. Ref. [309]).

Using the nomenclature of Sørensen [334], each element of Gλ µ(ξξξ ) is given

by:

Gλ µ(ξξξ ) =
N

∑
i=1

1
mi

∑
α=x,y,z

sλ ,iαsµ,iα , (6.5)

where sλ ,iα is the Jacobian s-matrix (λ = 1 . . .M + 3), which can be found via

inversion of another matrix, called the Jacobian t-matrix. This is defined in

three parts, associated with the M vibrational, 3 rotational and 3 translational

coordinates. These are given respectively [334] by:

tiα,λ =
∂ riα

∂ξλ

, (6.6)

tiα,M+β = ∑
λ=x,y,z

εαβγriγ (β = x,y,z), (6.7)

tiα,M+3+β = δαβ (β = x,y,z). (6.8)

Here riα defines the Cartesian coordinates, α=x,y,z, of each atom, i = 1 . . .N,

with respect to the center of mass of the system (body-fixed); ξλ is the λ th

vibrational coordinate and εαβγ is the fully antisymmetric Levi-Civita tensor.

The s-matrix is defined by

sκ,iα =
∂ξκ

∂ riα
, (6.9)
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where ξκ is a generalised coordinate (κ = 1, . . . ,3N) consisting of the transla-

tional, vibrational and rotational coordinates. The s-matrix is related to the

t-matrix by the chain rule:

∑
i,α

sk,iαtiα,µ = δkµ . (6.10)

In order to build the kinetic energy operator expansion, TROVE was

originally programmed such that the t-matrix is first generated, before be-

ing numerically inverted as in Eq. (6.10) to obtain the rotational and vibra-

tional elements of the s-matrix as expansions in terms of ξk, and in turn used

to build the G-matrix expansions. However, improvements have been made

(prior to the work undertaken in this thesis) since Ref. [50] to reflect a method

demonstrated by Sørensen [334] which reduces the size of the matrices that are

required to be inverted; these improvements will be outlined here.

Sørensen [334] makes use of a matrix of so-called “constraint vectors” ccc,

which in the Eckart embedding (as implemented in TROVE) are given by

cg,iα = mi ∑
β

εgαβ re
iβ , (6.11)

where g = x,y,z, re
iβ is a β -Cartesian (β=x,y,z) component of the nucleus i at

the equilibrium configuration and εgαβ is the fully antisymmetric Levi-Civita

tensor. These constraint vectors can be combined with the rotational t-vectors

to form a new 3×3 matrix,

Jgg′ = ∑
iα

cg,iαtg′,iα , (6.12)

which can be inverted to give ηgg′ . That is, ηgg′ and Jgg′ are related as follows

∑
g,g′′

ηg,g′′Jg′′g′ = δgg′, (6.13)

where g,g′ = x,y,z. Once ηgg′ and cg,iα have been found, they can be used to

form the rotational part of the s-matrix

sg,iα = ∑
g′

ηgg′cg′,iα . (6.14)
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Here, the ηgg′ coefficients are common to all atoms, reducing the number

of elements required to be evaluated; only inversion of the 3×3 (4×4 for non-

rigid representations [334, 50]) J-matrix (Eq. (6.12)) is required. It is for this

reason the method has been implemented in TROVE.

In the case of Eckart embedding, the J-matrix is linear in riα [334]. The

ηηη-matrix is expanded as a Taylor series in terms of the vibrational coordinates

ξλ ,

ηgg′ = ∑
i, j,k,...

η
gg′
i, j,k,...ξ

i
1ξ

j
2 ξ

k
3 . . . , (6.15)

and solved iteratively for the coefficients by inverting the J-matrix of Eq. (6.12).

Once the rotational part of the s-matrix has been found in this way, the

vibrational part can be found as follows.

TROVE’s default choice is to use linearised internal coordinates describ-

ing the vibrational motion of the molecule. The t- and s-matrices are simplified

by the linear transformation between Cartesian and linearised (rectilinear) co-

ordinates ξ lin
λ

:

riα = re
iα +∑

λ

Aiα,λ ξ
lin
λ

, (6.16)

ξ
lin
λ

= ∑
i,α

Bλ ,iα(riα − re
iα), (6.17)

where Aiα,λ and Bλ ,iα (i = 1 . . .N, α = x,y,z, λ = 1 . . .M) are matrices of coef-

ficients defining the direct and inverse transformation between the Cartesian

and linearised coordinates. The linearised coordinates are obtained by lineari-

sation (Taylor expanding in terms of Cartesian displacements and truncating

at the linear term) of the geometrically defined coordinates (GMD) such as

bond lengths, inter-bond angles and dihedral angles with respect to the Carte-

sian displacement from the equilibrium configuration [189]. The elements of

the linearised BBB-matrix are defined as the first derivatives of the Cartesian po-

sitions riα with respect to the GMD coordinates taken at the equilibrium and

thus coincide with the vibrational elements of the s-matrix in Eq. (6.9) at the

equilibrium:

Bλ ,iα = se
λ ,iα . (6.18)
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The elements of the A-matrix are subject to the constraints of the center of

mass, Eckart, and orthogonality conditions:

∑
iα

Bλ ,iαAiα,λ ′ = δλλ ′, (6.19)

see Ref. [50] for details. In this case, the J-matrix in Eq. (6.12) becomes

a simple linear function of ξ lin
λ

. The vibrational part of s is also simplified.

According to Sørensen [334] it is now given by

svib
λ ,iα = se

λ ,iα −∑
g,λ ′

ξ
lin
λ ′ ζ

g
λ ′,λ srot

g,iα , (6.20)

which makes use of the rotational part of the s-matrix, srot
g,iα , and where ζ

g
λ ′,λ

are the Coriolis coefficients

ζ
g
λ ′,λ = ∑

iα,β

εg,α,β Aiα,λ ′Bλ ,iα . (6.21)

It can clearly be seen that if the determinant of the t-matrix which is used

to build the KEO involves any bending angles it will tend to zero at linearity

and therefore inversion of this matrix in the process described above will lead to

singular terms. For example, for the 3N−6 coordinates illustrated in Fig. 6.2,

the determinant of the t-matrix becomes singular at the linear geometry:

det(t) = 2 sin(θ1) sin(θ2)R2 r2
1 r2

2. (6.22)

It should be noted that TROVE is now capable of working with geo-

metrically defined coordinates as described in Ref. [51]. Although the current

implementation described in this thesis is based on linearised coordinates only

(see Section 7.1), it is possible to extend it to be compatible with such geo-

metrically defined coordinates.

6.4 Chapter Summary

Two different approaches to dealing with linear molecules in ro-vibrational

energy calculations are introduced in this chapter, which will be explored

in Chapter 7. The (3N − 5) approach, which is now fully implemented in
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TROVE, is investigated in Section 7.1, and the (3N−6) approach, is outlined

in Section 7.2. The latter is the numerical method used in the variational

calculations presented in Chapter 8. A discussion and comparison between

the two approaches can be found in Chapter 10. The general formulation of

the kinetic energy operator, as it is implemented for non-linear molecules, has

been outlined in this chapter. This is necessary in order to understand the

singularity issue for linear molecules and why novel approaches to dealing with

them are required.



Chapter 7

Approaches to Dealing with

Linear Molecules

Two approaches to handling linear molecules in ro-vibrational calculations were

introduced in Chapter 6 and will be investigated in more detail in this chapter:

(3N−5) and (3N−6). While the idea behind the (3N−6) approach is to select

a form of the wave function which removes the singularity in the Hamiltonian

(which was shown in Section 6.3 to occur if standard Hamiltonians and number

of internal coordinates are used in ro-vibrational calculations), the (3N− 5)

approach makes use of a KEO which is already non-singular.

7.1 The (3N−5)-approach to Dealing with Lin-

ear Molecules

As demonstrated in Chapter 6, the singularity issue in the KEO is associated

with some of the angles used to describe the system becoming undefined at

linearity. According to the (3N − 5) approach, one of the rotational angles

must be combined with the vibrational modes (the Euler angle describing the

rotation of the molecule around the z axis, χ (see Fig. 6.1)). Therefore, an

extended set of the internal coordinates is defined to cover all vibrations as

well as this rotation motion; (3N−5) coordinates. This chapter outlines this

approach which has now been implemented in TROVE to construct a (3N−5)-

type kinetic energy operator (KEO) as part of TROVE’s numerical ‘on-the-fly’
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methodology. This approach was employed in the variational calculations of

Chapter 8.

7.1.1 The Coordinate System and KEO

In the case of 12C2H2, the common choice of the 3N− 6 curvilinear (GDC)

coordinates includes R≡ rCC, r1 ≡ rCH1 , r2 ≡ rCH2 , θ1 ≡ θCCH1 , θ2 ≡ θCCH2 , and

τ ≡ τHCCH (see Fig. 6.2). Thus, apart from the Euler angle χ (see Fig. 6.1), an-

other ‘singular’ coordinate is τ , describing the torsional motion of the molecule;

τ is undefined if either of the θs become 180◦, while χ is undefined for the linear

configuration θ1 = θ2 = 180◦. Using any of these coordinates would introduce

a singularity in the kinetic energy operator, even in the (3N−5) approach.

Singularity-free coordinates can be defined as follows. The equilibrium

configuration re
iα of a linear molecule is set along the molecular z-axis (cen-

tered at z = 0), as shown in Figure 6.2. The positions of the H1 and H2 atoms

are given by their (rectilinear) Cartesian x and y displacements relative to the

equilibrium linear configuration (subject to the center of mass and Eckart con-

ditions), supplemented by the bond length between the two carbon atoms, R

and the two carbon-hydrogen bonds lengths, r1 and r2. These seven coordi-

nates ξλ (∆x1, ∆y1, ∆r1, ∆x2, ∆y2, ∆r2 and ∆R, where ∆xi = rix and ∆yi = riy

(i = 1,2)) provide an (almost) unambiguous description of any instantaneous

configurations of 12C2H2 including the linear geometry; such a choice is not

ideal to describe the vibrational motion of the molecule as the bond lengths

r1 and r2 become ambiguous for the configurations with θi > 90◦ and θi < 90◦.

As will be seen below, the linearised version of this set of coordinate does not

have this problem.

Based on these seven coordinates ξλ , seven linearised coordinates can

be defined as follows. For the three stretching modes ξ lin
1 , ξ lin

2 and ξ lin
3 the

linearised versions of the bond length displacements ∆R, ∆r1, and ∆r2 are used.

The linearisation is defined by Taylor expanding the coordinates in terms of

the Cartesian displacements ∆xi, ∆yi, ∆zi (i = 1,2,3,4) and truncating after the

linear terms, as in Section 6.3.
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The four rectilinear bending modes ξ lin
4 , ξ lin

5 , ξ lin
6 and ξ lin

7 are defined as

the ∆xi and ∆yi (i = 1,2) Cartesian components of the hydrogen atoms, H1 and

H2 as follows:

ξ
lin
4 = ∆x1, ξ

lin
5 = ∆y1, (7.1)

ξ
lin
6 = ∆x2, ξ

lin
7 = ∆y2. (7.2)

Refs. [335, 314] give an alternative representation where the sinθi projection

on xi and yi are used. Technically, the x and y projections of the vectors, CH1

and CH2 onto the molecular ~ex and ~ey axes are defined using the normals ~n1

and ~n2 to the CCH1 and CCH2 planes, respectively:

∆x1 =−(~ey ·~n1), ∆y1 = (~ex ·~n1),

∆x2 = (~ey ·~n2), ∆y2 =−(~ex ·~n2), (7.3)

where the normals ~ni (i = 1,2) are given by:

~ni =
[~R×~ri]

Rri
. (7.4)

An illustration of these coordinates is given in Figure 7.1.

Figure 7.1: HCCH as described using the 3N − 5 coordinates employed in

TROVE (see text). ~R is the vector (of length R) pointing from the first to

the second carbon atom, C1 to C2, while ~ri are the two CHi bond vectors (of

lengths ri). The ∆x1, ∆x2, ∆y1 and ∆y2 notation of this diagram and Eq. (7.3)

is to reflect the Cartesian projections of the CHi bond vectors.
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The molecular xyz-body fixed system is chosen according to the Eckart

conditions [50] (see Figure 6.1) and for this choice of coordinates the coordinate

transformation in Eq. (6.16) is given by:

ri,x = (Ai,x,4 ξ
lin
4 + Ai,x,6 ξ

lin
6 ), (7.5)

ri,y = (Ai,y,5 ξ
lin
5 + Ai,y,7 ξ

lin
7 ), (7.6)

ri,z = re
i,z +(Ai,z,1 ξ

lin
1 + Ai,z,2 ξ

lin
2 + Ai,z,3 ξ

lin
3 ), (7.7)

where the property re
ix = re

iy = 0 is taken into account. The matrix elements

Aiα,λ (see Eq. (6.16)) are provided as part of the supplementary material of

Ref. [24]. Thus, the rectilinear bending coordinates coordinates ξ lin
4 , ξ lin

6 and

ξ lin
5 , ξ lin

7 are always directed along the x and y axes, respectively (Eq. (7.3)),

while ξ lin
1 , ξ lin

2 , and ξ lin
3 (i.e. ∆Rlin, ∆rlin

1 and ∆rlin
2 ) are along the z axis. Thus the

stretching linearized coordinates ξ lin
2 , and ξ lin

3 do not have the aforementioned

ambiguous configuration when θi > 90◦ and θi < 90◦. They are, however, less

physically intuitive as they do not support the chemical bonding between the

atoms.

It is important to note that in this coordinate system the angular momen-

tum defined by the remaining two Euler angles is conserved and thus all the

standard commutation properties (with standard matrix elements of ĴJJ) will

still apply. This is not an obvious conclusion; see, for example, the discussion

by Howard and Moss [336], Sørensen [334] or Watson [337], who obtained dif-

ferent commutation relations for the corresponding Ĵx, Ĵy, and Ĵz components.

However Hougen [325] and Howard and Moss [336] have shown that the normal

commutation relations can be always restored via a suitable unitary transfor-

mation of the eigenfunctions. The consequence of this conclusion is that the

standard procedure to build a KEO (e.g. based on the s- and t-matrices as

described in Section 6.3) can be used with the only amendment being to re-

move the z-component, which thus causes the Ĵz terms to disappear in the

KEO (Eq. (6.4)). The TROVE approach [50] (Section 6.3) is employed for

the process of building the kinetic energy operator, where the z-components of

all matrices (t, s, G) are set to zero. In other words, the angular momentum
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about the molecular axis is treated as purely vibrational, known as the Sayvetz

condition for linear molecules [337]. The (3N−5) treatment requires that the

condition K = L is fulfilled (see, for example, Refs. [330], [338]), where K is the

z-projection of the rotational angular momentum and L is the vibrational an-

gular momentum, otherwise nonphysical states would be included in the basis

set and the solution.

7.1.2 Symmetrisation using the TROVE (3N − 5)-

approach

The use of Dnh as opposed to D∞h symmetry is a practical alternative for

numerical calculations involving centrosymmetric linear molecules such as

12C2H2. The transformation matrices for the Dnh group were outlined in

Chapter 4. The symmetrisation procedure of TROVE [50, 51], based on a

set of “reduced” vibrational eigenvalue problems with simplified Hamiltonians,

is outlined in this section, along with a general subroutine which has been im-

plemented in TROVE to automatically generate all transformation matrices

associated with the irreducible representations of a symmetry group Dnh for

a given n, for use in calculations involving linear molecules. The solutions of

the eigenvalue problems resulting from the TROVE symmetrisation procedure

are also extended to include the classification of basis-set functions using `, the

eigenvalue (in units of h̄) of the vibrational angular momentum operator L̂z.

This facilitates the symmetry adaptation of the basis set functions in terms of

the irreducible representations of Dnh.

In a given TROVE calculation, the required extent of the rotational exci-

tation is ideally defined by the maximum value Jmax of the angular momentum

quantum number J. For a linear molecule, only combinations with k = ` are

physically meaningful, where k is the z-axis-projection of the rotational angu-

lar momentum quantum number and ` is the vibrational angular momentum

quantum number, as part of the 3N − 5-approach to linear molecules. The

maximum values of |k| and |`|, Kmax and Lmax, respectively, are then Kmax =

Lmax = Jmax. However, in practise the numerical calculations are computation-
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ally limited by the total number of quanta representing vibrational bending

modes, which controls the maximum value for |`|, and thus |k|. The group

Dnh suitable for symmetry classification of ro-vibrational states has an n-value

determined by Kmax = Lmax; n=2Lmax+1 for odd-n and n=2Lmax+2 for even-n.

It has already been mentioned that the use of a symmetry-adapted ro-

vibrational basis set can considerably reduce the size of the Hamiltonian matrix

which is to be diagonalised numerically in ro-vibrational energy calculations.

This is due to the useful property that the matrix elements between basis

functions of different symmetry are zero by definition:

〈ΨJ,Γs,α
µ |Hrv |ΨJ,Γt ,α

′

µ ′ 〉= Hµ,µ ′δs,tδα,α ′, (7.8)

where Γs and Γt give the irreducible representations (irreps) of Dnh that the

basis functions, Ψ
J,Γs,α
µ and Ψ

J,Γt ,α
′

µ ′ , transform according to, and α and α ′ rep-

resent their degenerate components (if present). The block diagonal structure

of a Hamiltonian matrix in the Dnh irreducible representation is given in Figure

7.2; the symmetry blocks of non-vanishing matrix elements can be diagonalised

separately.

In addition to the matrix becoming block-diagonal according to the sym-

metries of the basis functions, the resulting eigenfunctions are automatically

symmetrised and can be labelled by the irrep that they generate. Without

this labelling, the calculations would produce redundant energies, there would

be no way to determine the appropriate nuclear-spin statistics to be applied

to a given state, and it would be impossible to identify the rotation-vibration

transitions allowed by symmetry selection rules [189]. In particular, the nu-

clear spin-statistical weight factors gns entering into intensity calculations (for

12C2H2 the spin-statistical weight factors are 1 for Σg
+ and Σu

− (para) ro-

vibrational states and 3 for Σg
− and Σu

+ (ortho) states) would be unable to

be allocated to individual states. There are no allowed electric dipole transi-

tions between ortho and para states [56, 15]. Allocating symmetries to each

state also makes processes such as refinement (for which comparison against

experimental energy levels is required; see Section 9.2.1) far easier.
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Figure 7.2: The block diagonal structure of a Hamiltonian matrix in the Dnh

irreducible representation. The empty (white) cells indicate blocks of vanish-

ing matrix elements. It should be noted that, although B-symmetries will be

present for even values of n, they are not physical and do not appear as a block

of matrix elements to be diagonalised.

The symmetrisation is achieved by utilising the fact that each of these

Hamiltonian operators commute with the operations in the symmetry group

of the molecule in question [200], so that eigenfunctions of a reduced vibra-

tional Hamiltonian generate irreducible representations of the symmetry group.

Consequently, a symmetry-adapted ro-vibrational basis set can be obtained nu-

merically by solving the eigenvalue problems for the reduced Hamiltonians; the

vibrational basis functions are products of the eigenfunctions thus obtained.

TROVE uses a general numerical symmetrisation approach to build a

symmetry adapted basis set, recently outlined in Ref. [200], which will be

summarised here. It utilises the concept of a sum-of-product basis set, with

the ro-vibrational basis functions (prior to symmetrisation) given by:

Φ
J
k,v,l(θ ,φ ,χ,ξ1,ξ2...ξM) = |J,k,m〉 φn1(ξ1)φn2(ξ2) . . .φnN (ξM), (7.9)

with one-dimensional (1D) vibrational basis functions φni(ξi) (where ξi is a

generalised vibrational coordinate) and rigid-rotor (spherical harmonics) ro-
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tational basis functions |J,k,m〉, where J is the rotational angular momentum

quantum number, and k and m are the quantum numbers describing its projec-

tions on the molecular z and laboratory Z axes, respectively (with m commonly

dropped or taken as m = 0 in the absence of an external electric field, as is the

case in this work).

According to the TROVE symmetrisation technique [200], the symmetry

adapted vibrational basis functions are formed from linear combinations of the

products of the 1D vibrational basis functions φni(ξi) as follows. For calcu-

lations involving 12C2H2 in TROVE, the vibrational part of the basis set of

Eq. (7.9) is divided into three symmetry-independent vibrational sub-spaces:

CC− stretch : φ
(1D)
n1 (ξ

lin
1 ) = φn1(ξ

lin
1 ), (7.10)

CH− stretches : φ
(2D)
n2n3 (ξ

lin
2 ,ξ lin

3 ) = φn2(ξ
lin
2 )φn3(ξ

lin
3 ), (7.11)

Bends : φ
(4D)
n4n5n6n7(ξ

lin
4 ,ξ lin

5 ,ξ lin
6 ,ξ lin

7 ) = φn4(ξ
lin
4 )φn5(ξ

lin
5 )φn6(ξ

lin
6 )φn7(ξ

lin
7 ), (7.12)

where n1. . .n7 relate to the vibrational modes of acetylene as used in the

TROVE approach; Table 3.1 of Section 3.1 gives the typical quantum num-

bers used to describe the rotational and vibrational states of 12C2H2, with their

relationship to the quantum numbers used in TROVE given in Table 7.1.

For the stretching primitive basis functions, φn1(ξ1), φn2(ξ2) (Eq. 7.10)

and φn3(ξ3) (Eq. 7.11), the eigenfunctions of the corresponding 1D reduced

stretching Hamiltonian operators Ĥ(1D)
i are used, obtained using the Numerov-

Cooley approach [50, 339, 340]. The bending basis functions, φn4(ξ4) . . .φn7(ξ7)

(Eq. 7.12), on the other hand, are formed from 1D Harmonic oscillator func-

tions (the harmonic constants ω̃i are obtained from the corresponding second

derivatives of V (ξξξ ) at the equilibrium geometry). Each invariant sub-space is

then processed through the corresponding reduced Schrödinger equation (1D,

2D and 4D, respectively). The reduced Hamiltonians Ĥ(ND) (N = 1,2,4) are
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Table 7.1: Quantum numbers used to classify the energy states of 12C2H2 in

TROVE. See Table 3.1 for description of the experimental quantum numbers.

TROVE Standard quantum numbers (see Table 3.1)

n1 CC-stretch (1D) v2

n2,n3 CH-stretches (2D) v1 + v3

n4,n5,n6,n7 Bends (4D) v4 + v5

L Total vibrational angular momentum, L=|`4 + `5|

K = |k| Rotational quantum number; z-projection of the rotational angular momentum

J Quantum number associated with rotational angular momentum, J.

Γvib Vibrational symmetry

Γrot Rotational symmetry

Γ Total symmetry, Γvib⊗Γrot, can be related to e/ f and ortho/para

(see Chapter 3 for definitions)

constructed by averaging the total vibrational Hamiltonian operator Ĥ(J=0)

over the other ground vibrational basis functions. For example, Ĥ(4D) is given

by:

Ĥ(4D) = 〈0| 〈0,0| Ĥ(J=0) |0,0〉 |0〉 , (7.13)

where |0〉 = φ
(1D)
0 (ξ1) and |0,0〉 = φ

(2D)
0,0 (ξ2,ξ3). The eigenfunctions obtained

are classified according to the Dnh point group symmetry, as outlined in Chap-

ter 4 (as opposed to infinite-order D∞h point group). The symmetrised eigen-

solution of the bending sub-space (Eq. 7.12) leads to a solution of the 4D

isotropic oscillator in the D∞h representation.

According to the idea of the so-called complete set of commuting opera-

tors (CSCO) [200] which the TROVE symmetrisation approach is based on,

the eigenfunctions of the reduced operator Ĥ(ND) must transform according

to one of the irreps of the symmetry group of the system, since Ĥ(ND) com-

mutes with the symmetry operators of this group. Thus the symmetrisation of

the basis set is generated automatically by solving the appropriate eigenvalue

problem, provided that the corresponding irreps have been determined. To

this end, TROVE applies the symmetry operators of the appropriate group

to the eigenfunctions and analyses their transformation properties on a set of
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sampled geometries (usually 40-60). Some states of the same energy (either

with accidental or actual degeneracy) may appear as random mixtures of each

other, and have to be processed simultaneously and even further reduced to

irreps, if necessary (see Section 7.1.3 for an example).

Applying this procedure to stretching functions gives rise to A-type sym-

metries: e.g. for Dnh (even n), the eigenfunctions of Ĥ(1D) span the A1g irrep,

while the eigenfunctions of Ĥ(2D) span the A1g and A2u irreps.

The 4D bending basis set, based on the 1D harmonic oscillators of

Eq. (7.12), has the disadvantage of being extremely degenerate: combinations

of φ
(4D)
n4n5n6n7 give rise to large clusters of the same energies. According to the

TROVE symmetrisation approach these combinations must be processed to-

gether, which makes this process extremely slow. In order to facilitate this step

the 4D bending sets (Eq. (7.12)) are first transformed to become eigenfunctions

of the vibrational angular momentum operator,

L̂z = ∑
λ ,λ ′

ξ
lin
λ

ζ
z
λ ,λ ′ p̂λ ′ (7.14)

where pλ is a vibrational momentum operator, ζ
z
λ ,λ ′ are Coriolis coefficients

[334], and ξ lin
λ

are linearised internal coordinates.

TROVE is equipped to compute matrix elements of quadratic forms,

therefore L̂2
z is used instead of L̂z. Using the φ

(4D)
n4n5n6n7 basis functions eigenfunc-

tions of L̂2
z are found by diagonalising the matrix formed by combinations of

the 4D bending basis set of Eq. (7.12):

〈φ (4D)
n4n5n6n7 | L̂

2
z |φ

(4D)
n′4n′5n′6n′7

〉 . (7.15)

The eigenfunctions of L̂2
z are consequently characterised by their vibrational

angular momentum ` = |`| =
√

`2 and can thus be divided into independent

sub-sets with different symmetry properties: the L = 0 sub-set must be a mix-

ture of A-type functions, while the L > 0 sub-sets consist of the EL-type irreps

(ELg and ELu). These mixtures are then further reduced to irreps using the

TROVE symmetrisation scheme outlined above, in which the reduced 4D-

eigenvalue problem, using the eigenfunctions of L̂2
z as the basis set, is solved
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for a 4D isotropic harmonic oscillator Hamiltonian:

Ĥ4D =
1
2
(

p̂2
4 + p̂2

5 + p̂2
6 + p̂2

7
)

+
1
2

λ
(
ξ

2
4 + ξ

2
5 + ξ

2
6 + ξ

2
7
)
, (7.16)

where λ is a constant related to the standard harmonic oscillator constant (see

Sections 10.4.3 and 11.3.2 of Ref [189]) and p̂i are the vibrational momenta,

conjugate to generalised vibrational coordinates ξi. Thus eigenfunctions are

obtained which can be divided into sub-sets of the same energies and values

of `. It also facilitates another important constraint for the (3N−5) approach

to linear molecules; that the rotation and vibrational basis sets need to be

coupled according to the linear molecule angular momentum rule k = ` (see,

for example, Refs. [330, 338], and earlier in this chapter), where K = |k|, which

requires the states to be classified by L. The maximum value for Lmax = Kmax

is specified as an input into the TROVE numerical routine. These sub-sets

must transform independently, thereby significantly decreasing the time spent

on the symmetry sampling step by breaking the symmetry space into small sets

and making numerical calculations more computationally viable. Although

the L̂2
z -diagonalisation step is not strictly necessary for the general TROVE

symmetrisation procedure that follows it, this increase in efficiency is a big

advantage.

As a result of applying the procedure described above, a symmetry-

adapted vibrational basis set Φ
Γvib,α
v,L is generated. Here Γvib is the irrep of

the basis function according to Dnh, and α indicates a degenerate component

in the case of 2D irreps.

The symmetry-adapted rotational basis set in TROVE is represented by:

|J,K,τ〉Γrot =
iσ√

2

[
|J,K〉+(−1)J+K+τ |J,−K〉

]
, (7.17)

where K = 0 is a special case, given by:

|J,0,τ〉Γrot = |J,0〉 . (7.18)

Here |J,k〉 is a rigid rotor wavefunction, with the Z-projection of the rotational

quantum number m omitted here. τ (= 0,1) is a parameter used to define
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the parity of a state, where σ = (K mod 3) for τ = 1 and σ = 0 for τ = 0 (see

[341, 342, 200]). The irreps Γrot of these functions are listed in Table 7.2, where

τ defines their degenerate component. The symmetry properties of |J,K,τ〉Γrot

can be derived from those of |J,k〉 using the method described in Ref. [55].

Table 7.2: Symmetries of the symmetrised rotational basis set used by

TROVE, Eqs. (7.17),7.18 for different combinations of J, K and τ (where τ

(= 0,1) and K = |k|); each 2D representation EKg state has an a and b compo-

nent, represented by the different values of τ . See Table 4.7 for an explanation

of the differing notation of Γrot for even and odd values of n.

Γrot

K τ Even n Odd n

0
0 A1g A

′
1

1 A2g A
′
2

> 0, odd
0 Ekgb E

′′
kb

1 Ekga E
′′
ka

> 0, even
0 Ekga E

′
ka

1 Ekgb E
′
kb

The vibrational basis set is then processed through a double-layered con-

traction scheme [200], where (i) symmetrically independent modes are com-

bined and used to solve reduced Hamiltonian problems resulting in sym-

metrised combinations of the corresponding basis functions and (ii) then used

to solve the vibrational (J = 0) problem. The final contracted TROVE basis

functions are given by symmetrised products of the rotational and vibrational

basis functions,

Φ
J,Γ
v,L,K = Φ

Γvib
v,l ⊗|J,K,Γrot〉. (7.19)

Here, Φ
Γvib
v,l is a vibrational (J = 0) eigenfunction of the pure vibrational

(of generic vibrational quantum number v) Hamiltonian Ĥvib which trans-

forms according to the Γvib irreducible representation (irrep) [333]. Note that
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K = |k|= L according to the (3N−5) approach to angular momentum in linear

molecules (see, for example, Ref. [330], [338]), which ensures no nonphysical

states are included in the basis set and corresponding solution. |J,K,Γrot〉 is

a symmetrised linear combination of rotational basis functions which trans-

form according to the Γrot irrep and Γs is one of the irreps of the direct

product Γvib⊗Γrot. Equation (7.19) gives the final contracted symmetrised

TROVE ro-vibrational basis functions. Further details on the general sym-

metrisation approach in TROVE can be found in Ref. [200], with updates for

linear molecules outlined in this Chapter (based on Chubb et al. [55]).

As mentioned in Chapter 4, for a linear molecule such as HCCH both

the vibrational Φ
Γvib
v,l and rotational |J,K,Γrot〉 basis functions must transform

according to the infinite molecular point group D∞h, while the total nuclear-

rotation-vibration eigenfunction spans a four-dimensional irrep of the finite

D∞h(M) molecular symmetry group, or isomorphic to it [55]. The latter con-

straint can also be interpreted within the irreps of the point group D∞h as

follows. The D∞h point group spans the following irreps: A1g, A2g, A1u, A2u,

E1g, E1u, . . . Ek(g/u) (k = 1,2, . . . ,∞). The rotational and vibrational basis sym-

metries Γvib and Γrot spanning these irreps can also be associated with the

corresponding value of the projection of the angular momenta (vibrational L

or rotational K) on the z axis: the A-type irreps are those with a zero value

of L (or K), while the Ek irreps are characterised by the angular momentum

quantum number K. Hence, both Φ
Γvib
v,l and |J,K,Γrot〉 can span any irreps

with the corresponding value of the angular momentum, L or K, while the to-

tal nuclear-rotation-vibration function in Eq. (7.19) can span only the A-type

irreps Γ of D∞h.

The model outlined in this section, along with the potential energy func-

tion given in Section 8.2, and dipole moment function given in Section 8.3 were

used in the calculation of the ab initio line list given in Section 8.4.
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7.1.3 Numerical Example of Basis Set Symmetrisation

As an illustration of the practical application of the finite Dnh group being

used in place of D∞h, an example of the construction of the vibrational basis

set in case of the linear molecule 12C2H2 is given here. The implementation

of the (3N− 5) coordinates approach in TROVE is used here and a set of

seven vibrational coordinates is thus used for 12C2H2: ∆R, ∆r1, ∆r2, ∆x1, ∆y1,

∆x2, ∆y2, as illustrated in Figure 7.1. The transformation matrices defining

their symmetry properties are listed in Table 7.3 (with even n used in this

example). These relate to the symmetry operations of Table 4.4, and the

general irrep transformation matrices for Dnh of even n given in Table 4.11.

The two-component vectors ~ρ1 = (∆x1,∆y1)T and ~ρ2 = (∆x2,∆y2)T transform

as E1u, with the corresponding 2D transformation matrices from Table 4.11.

Table 7.3: Transformation matrices based on those of Table 4.11

for the Dnh (n even) group (relating to the symmetry operations of

Table 4.4), where n is even, for transforming the set of 7 vibrational

coordinates (ξ = {R, r1, r2, ∆x1, ∆y1, ∆x2, ∆y2}, as illustrated in

Figure 7.1) used in the calculations of Chapter 8. m is an integer for

the bounds given for each operation, used to form εm, where ε = 2π

n

in all cases. The transformation is given in terms of two-component

vectors ~ρ1 = (∆x1,∆y1)T and ~ρ2 = (∆x2,∆y2)T , which transform as

E1u with the corresponding transformation matrices ME1u
R (with R

denoting the general group operation) from Table 4.11.

Irrep εm m Transformation matrix Transformation

E 1 0 0 0 0 0 0 ∆R

0 1 0 0 0 0 0 ∆r1

0 0 1 0 0 0 0 ∆r2

0 0 0 1 0 0 0
~ρ1

0 0 0 0 1 0 0

0 0 0 0 0 1 0
~ρ2

0 0 0 0 0 0 1

Cm
n mε 1 . . .n−1 1 0 0 0 0 0 0 ∆R

0 1 0 0 0 0 0 ∆r1

0 0 1 0 0 0 0 ∆r2



7.1. The (3N−5)-approach to Dealing with Linear Molecules 141

0 0 0 cosφn −sinφn 0 0
ME1u

Cr
n

(εm) ·~ρ1
0 0 0 sinφn cosφn 0 0

0 0 0 0 0 cosφn −sinφn
ME1u

Cr
n

(εm) ·~ρ2
0 0 0 0 0 sinφn cosφn

C
′
2 2mε 0 . . . n

2 −1 1 0 0 0 0 0 0 ∆R

C
′′
2 ε(2m + 1) 0 . . . n

2 −1 0 0 1 0 0 0 0 ∆r2

0 1 0 0 0 0 0 ∆r1

0 0 0 0 0 cosφn sinφn ME1u

C
′/′′
2

(εm) ·~ρ2
0 0 0 0 0 sinφn −cosφn

0 0 0 cosφn sinφn 0 0
ME1u

C
′/′′
2

(εm) ·~ρ1
0 0 0 sinφn −cosφn 0 0

i 1 0 0 0 0 0 0 ∆R

0 0 1 0 0 0 0 ∆r2

0 1 0 0 0 0 0 ∆r1

0 0 0 0 0 −1 0
−~ρ2

0 0 0 0 0 0 −1

0 0 0 −1 0 0 0
−~ρ1

0 0 0 0 −1 0 0

σh 1 0 0 0 0 0 0 ∆R

0 0 1 0 0 0 0 ∆r2

0 1 0 0 0 0 0 ∆r1

0 0 0 0 0 1 0
~ρ2

0 0 0 0 0 0 1

0 0 0 1 0 0 0
~ρ1

0 0 0 0 1 0 0

σd ε(2m + 1) 0 . . . n
2 −1 1 0 0 0 0 0 0 ∆R

σv 2mε 0 . . . n
2 −1 0 1 0 0 0 0 0 ∆r1

0 0 1 0 0 0 0 ∆r2

0 0 0 cosφn sinφn 1 0
ME1u

σd/v
(εm) ·~ρ1

0 0 0 sinφn −cosφn 0 1

0 0 0 1 0 cosφn sinφn
ME1u

σd/v
(εm) ·~ρ2

0 0 0 0 1 sinφn −cosφn

Si
n mε 1 . . .n−2 1 0 0 0 0 0 0 ∆R

0 0 1 0 0 0 0 ∆r2

0 1 0 0 0 0 0 ∆r1

0 0 0 0 0 cosφn −sinφn
ME1u

Sr
n

(εm) ·~ρ2



7.1. The (3N−5)-approach to Dealing with Linear Molecules 142

0 0 0 0 0 sinφn cosφn

0 0 0 cosφn −sinφn 0 0
ME1u

Sr
n

(εm) ·~ρ1
0 0 0 sinφn cosφn 0 0

An example of building a symmetry adapted basis set for the 4D bending

function of Eq. (7.12) using the TROVE symmetrisation approach for linear

molecules is given. In this example, the size of the primitive basis sets was

controlled by the polyad number

P = 2n1 + n2 + n3 + n4 + n5 + n6 + n7 ≤ Pmax, (7.20)

with Pmax=2. Here, the quantum numbers nk for k=1 . . .7 correspond to the

vibrational primitive functions φnk(ξk), in the TROVE quantum number no-

tation of Table 7.1.

Using the 4D reduced Hamiltonian in Eq. (7.13) with this small basis set,

the following contracted eigenfunctions are obtained (with only the first seven

given here for illustration purposes):

Ψ
L=0
1 =−0.9793 |0000〉−0.0095(|2000〉+ |0200〉+ |0020〉 + |0002〉)+ 0.1425(|1010〉+ |0101〉),

Ψ
L=1
2 =

1√
2

(|1000〉− |0010〉),

Ψ
L=1
3 =

1√
2

(|0100〉− |0010〉),

Ψ
L=1
4 =

1√
2

(|1000〉+ |0100〉),

Ψ
L=1
5 =

1√
2

(|0100〉+ |0010〉),

Ψ
L=2
6 =−0.3505(|2000〉− |0200〉+ |0020〉− |0002〉)+ 0.4957(|1010〉− |0101〉)+

+ 0.0651(|1100〉− |1001〉− |0110〉+ |0011〉),

Ψ
L=2
7 = 0.0460(|2000〉− |0200〉+ |0020〉− |0002〉)−0.0651(|1010〉− |0101〉)+

+ 0.4957(|1100〉− |1001〉− |0110〉+ |0011〉),

One can see that after this step some of the eigenfunctions (Ψ1,Ψ2,Ψ3,Ψ4 and

Ψ5) are already in the form of an irreducible representation, while Ψ6 and Ψ7

need to be further reduced.
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In order to define the L-values, the matrix elements of L̂z are computed

as in Eqs. (7.14) and (7.15). In this example, the sets with degenerate eigen-

values and identical L values are: {ΨL=0
1 } ( Ẽ1 = 0 cm-1), {ΨL=1

2 ,ΨL=1
3 } (

Ẽ2 = 636.11 cm-1), {ΨL=1
4 ,ΨL=1

5 } ( Ẽ3 = 763.12 cm-1), {ΨL=2
6 ,ΨL=2

7 } ( Ẽ4 =

1215.84 cm-1). The pair of eigenfunctions ΨL=1
2 and ΨL=1

3 , for example, both

have L = 1 and are also degenerate with the eigenvalue 636.11 cm-1 (±10−12).

All degenerate states are combined into the same set and are assumed to share

symmetry transformation properties, now with the additional constraint that

those states in the same set must also possess the same value of L. For the

present example, this gives the following symmetries and L-values: {ΨL=0
1 }A1g ,

{ΨL=1
2 ,ΨL=1

3 }E1g , {ΨL=1
4 ,ΨL=1

5 }E1u , {ΨL=2
6 ,ΨL=2

7 }E2g .

The irreducible form of the wavefunctions Ψ6,Ψ7 is now given by:

Ψ
L=2
6 =

√
2

4
(|2000〉− |0200〉+ |0020〉− |0002〉)− 1

2
(|1010〉− |0101〉),

Ψ
L=2
7 =

1
2

(|1100〉− |1001〉− |0110〉+ |0011〉).

7.1.4 Even vs. Odd Dnh Symmetries

For the example calculations using even vs odd Dnh that are outlined below

the primitive and contracted basis sets were controlled by the polyad number

as given by Eq. (8.13), with Pmax=8 for the primitive basis set and reduced to

6 after contraction (see Refs. [50, 24] for more details).

The finite Dnh groups were used here, with a value of n large enough to

cover all required excitations of the vibrational angular momentum L = |`| up

to up Lmax and of the rotational quantum number K up to Kmax (with the

constraint Lmax = Kmax) such that n = 2Lmax + 1 or n = 2Lmax + 2 (depending

on whether n is odd or even, respectively). For example, in order to be able to

cover the rotational excitation up to K = 10 (E10g and E10u), it is necessary to

use at least the D21h symmetry.

Even though odd and even values of n lead to different symmetry opera-

tions (see Table 4.4), both lead to the same resulting eigenvalues energies in

the TROVE calculations, with example energies and assignments given in Ta-



7.1. The (3N−5)-approach to Dealing with Linear Molecules 144

ble 7.4, on the condition that n≥ 2Lmax + 1 (odd n) or n≥ 2Lmax + 2 (even n).

For a maximum value of the z-projection of the vibrational angular momentum,

Lmax = Kmax = 4, different values of n were used for Dnh in the symmetrisation

approach described in Section 7.1.2.

Table 7.4: An example of some rotational, vibrational and ro-vibrational as-

signments (see Section 3.1 for the meaning of these assignments) with associ-

ated symmetries (Γr, Γv and Γr−v, respectively) from ro-vibrational calculations

using TROVE of 12C2H2 using different (even/odd) values of n for Dnh. In

each case Lmax = 4. The energies are identical for symmetries of higher n than

those shown here, but converge towards the experimental values as the polyad

number (Eq. 8.13) is increased; a low value is used here for demonstration

purposes.

D12h D13h

Energy (cm-1) J K τ ν1ν2ν3ν
l4
4 ν

l5
5 Γr−v Γr Γv Γr−v Γr Γv

2.356491 1 0 1 0000000 A2g A2g A1g A
′
2 A

′
2 A

′
1

625.810547 1 1 1 0001100 A2g E1g E1g A
′
2 E

′′
1 E

′′
1

1283.603736 1 0 1 0002000 A2g A2g A1g A
′
2 A

′
2 A

′
1

7.069433 2 0 0 0000000 A1g A1g A1g A
′
1 A

′
1 A

′
1

630.518518 2 1 1 0001100 A1g E1g E1g A
′
1 E

′′
1 E

′′
1

1276.518756 2 2 0 0002200 A1g E2g E2g A
′
1 E

′
2 E

′
2

If a lower value than n = 2Lmax +1 (for odd n) or n = 2Lmax +2 (for even n)

is used, then the symmetrisation procedure will lead to the wrong classification

of states, resulting in, for example, the wrong nuclear statistics in intensity

calculations. Ideally the maximum value of Lmax = Kmax would be limited by

Kmax = Jmax, however, it should be noted that in practise numerical calculations

are limited by the maximum number of vibrational bending quanta which can

be included in calculations, giving a limit on Lmax. This is therefore referred

to as the deciding factor in what n for Dnh to use.



7.2. The (3N−6)-approach to Dealing with Linear Molecules 145

7.2 The (3N−6)-approach to Dealing with Lin-

ear Molecules

The 3N−6-approach builds upon the ideas and methodology set out by Bunker

and Jensen [333, 343] which are based upon a linear triatomic molecule, CH2

[343]. Here, this concept is extended to symmetric tetratomic molecule 12C2H2.

The KEO for a linear molecule (see Section 6.3, Equation (6.4)) in terms

of the 3N− 6 vibrational coordinates ξξξ (R, r1, r2, θ1, θ2 and τ) illustrated

in Figure 6.2 contains singular terms with negative exponents for coordinates

describing bending vibrations. This is demonstrated by the determinant of the

t-matrix of Equation 6.6 as written in terms of this set of 3N− 6 curvilinear

coordinates for 12C2H2:

det(t) = 2 sin(θ1) sin(θ2)R2 r2
1 r2

2. (7.21)

It can clearly be seen that if this determinant involves any bending angles,

as it does here, it will tend to zero at linearity and therefore inversion of this

matrix in the process of building the KEO, as described in Section 6.3, will

lead to singular terms.

For the remainder of this section, the bending angles will be referred to as

α1,α2 instead of θ1, θ2 (as given in Figure 6.2) which are related by α1=π−θ1,

α2=π−θ2.

As the bending vibrational coordinates, α1,α2, approach zero at the linear

geometry of acetylene, τ and χ (the torsional coordinate of Figure 6.2 and the

Euler angle describing rotation about the molecule-fixed z-axis of Figure 6.1,

respectively) become undefined. As a result, the terms of the KEO G-matrix

which describe vibrations with respect to the τ and χ coordinates, along with

part of the pseudopotential U , diverge as 1/α2
1 or 1/α2

2 at small values of the

α1 or α2 bending coordinates.

For example, the 1/α2
1 -divergent terms of the KEO for acetylene can be



7.2. The (3N−6)-approach to Dealing with Linear Molecules 146

collected together into the expression

T (1)
sing =

1
sin2

α1

(
− h̄2

2
G(1)

ττ

∂ 2

∂τ2 −
ih̄
2

[
G(1)

τχ + G(1)
χτ

]
∂

∂τ
Ĵz +

1
2

G(1)
χχ Ĵ2

z +U (1)
)

,

(7.22)

where the singular parts of the expressions for elements of vibrational G(1)
ττ ,

rotational G(1)
χχ and Coriolis G(1)

τχ and G(1)
χτ matrices and pseudopotential U (1)

are independent of α1, α2 and τ . In practical calculations, these are replaced

by constant values computed at the equilibrium. An expression similar to

Eq. (7.22) can be obtained for T (2)
sing by collecting terms in the total KEO with

a 1/sin2
α2 factor. The explicit analytic expressions for T (1)

sing and T (2)
sing, in the

coordinate system as shown in Figure 6.2, can be derived using the script which

is provided as supplementary information of Ref. [24].

The basis functions φ1(α1) and φ2(α2) now need to be formulated in such

a way that they exactly cancel the divergence of the KEO in the vicinity of the

linear geometry. From the pragmatic point of view of numerical calculations,

the basis functions must be chosen such that they eliminate the singularity in

the respective matrix elements. The most evident approach is to cancel the

singularity in each term in Eq. (7.22) individually by using the form φ1(α1)∼α1

and φ2(α2) ∼ α2. This is satisfied, for example, by choosing the Legendre

orthogonal polynomials as a basis, which approach zero linearly. For this

reason, Legendre based polynomials have been employed as a suitable basis

functions for solving the bending problem in many variational ro-vibrational

approaches [304, 305, 306, 307, 308, 38, 309, 310, 311, 312, 313].

Here, an alternative approach, developed in Refs. [333], [343] for triatomic

molecules, is followed, which attempts to find the exact form of the bending

wave function in the vicinity of the linear geometry. It is based on the fact that

since neither the energy nor the wave function can be singular, the Hamiltonian

operator acting on a wave function has to produce a non-singular function as

well. Therefore, the divergence of T (1)
sing and T (2)

sing must be exactly cancelled by

other terms in the ro-vibrational Hamiltonian; the kinetic energy operators for

the α1 and α2 vibrations. This can only be so if the wave function φv1(α1)
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satisfies the equation

− h̄2

2
Gα1α1

∂ 2φv1(α1)
∂α2

1
+ T (1)

singφv1(α1) = 0 at α1 = 0, (7.23)

with a similar expression for φv2(α2). If the basis functions for χ and τ coor-

dinates is chosen to be φk(χ) = (2π)−1/2eikχ and φt(τ) = (2π)−1/2eitτ (k and t

are quantum numbers associated with χ and τ , respectively), the integration

of Eq.(7.23) over the χ and τ variables yields

Gα1α1

∂ 2φv1(α1)
∂α2

1
− 1

sin2
α1

(
t2G(1)

ττ + kt
[
G(1)

τχ + G(1)
χτ

]
+ k2G(1)

χχ +
2
h̄2U (1)

)
φv1(α1) = 0.

(7.24)

The solution of this equation implies that for small α1 the wave function be-

haves as

ψv1(α1)∼ (1− cos2
α1)1/4Lm1

n1
(cosα1), (7.25)

where Lm1
n1 (cosα1) is the associated Legendre function of the first kind, a solu-

tion to the associated Legendre differential equation [344] with

n1 =−1
2

(7.26)

m1(k, t) =

√√√√1
4

+
t2G(1)

ττ + kt
[
G(1)

τχ + G(1)
χτ

]
+ k2G(1)

χχ + 2U (1)/h̄2

Gα1α1

. (7.27)

Similar expressions can be obtained for ψv2(α2). At small values of the ar-

gument α1, the wave function in Eq. 7.25 can be reduced to the expression

ψv1(α1)∼ α
1
2±m1(k,t)
1 , (7.28)

where plus and minus signs indicate two solutions for α1 varying in the pos-

itive [0,π] and the negative [0,−π] directions, respectively. From Eq. (7.28)

it follows that bending basis functions are intrinsically coupled with the tor-

sional and k-type rotational molecular motions through parametric dependence

on the respective quantum numbers, k and t. More importantly, the bending

wave function of a linear molecule behaves as a square root function and forms

a non-differentiable cusp at the linear geometry, as illustrated in Figure 7.3.
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This linearity-cusp in the wave function is not well reproduced by the com-

monly used expansions in terms of Legendre polynomials, and, furthermore,

convergence towards the exact minimum point of the solution of Eq. (7.28)

is slow, as can also be seen in Figure 7.3. Other recent works (for example,

Refs. [207, 345]), have also come to the conclusion that the form of the bending

wave function of a linear molecule has zero amplitude at ρ = 0, as in Figure 7.3.

Work is in progress to implement the approach outlined in this section

in to TROVE. The presently implemented automatic numerical approach for

building the power series expansion of the KEO is not capable of treating terms

with negative exponents, which is the main obstacle to generalisation of the

present method. For grid-based approaches, however, the implementation of

the present method should be straightforward. Currently, the KEO is built

externally using symbolic algebra packages, and read in to TROVE.

It is thought that this approach could be applied to any chain tetratomic

molecule and easily extended to polyatomic molecules with more than four

atoms, such as linear molecule cyanoacetylene, C3HN, for example (which is

potentially important in exoplanet atmospheres [346] and in investigating that

of Titan [347]), or Propynylidyne, C3H, [348, 349]. It will be interesting to

test it also on chain molecules with relatively high barrier to linearity, e.g.,

H2O2,[350, 15] to see if the exact cusp conditions in Eq. (7.28) will be relevant

for the basis set convergence of the variational results.

7.3 Chapter Summary

The (3N−5) and (3N−6) approaches to dealing with linear molecules in ro-

vibrational energy calculations have been outlined in this chapter. The symme-

try of a centrosymmetric linear molecule was a big part of the implementation

of the (3N−5) approach, which has been fully implemented into TROVE (see

Chapter 4 for more general background on the symmetry of centrosymmetric

linear molecules) and is valid for any linear molecule. The general numerical

symmetrisation approach used by TROVE to build symmetry-adapted basis
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Figure 7.3: Comparison of the exact bending wave function given by Eq. (7.28)

with k, t = 0 (black line in both panels), with least squares fits of standard Leg-

endre polynomial series truncated at; nmax = 2 (blue), 6 (red), and 10 (orange),

for Ln(α) (panel a) and Ln(cosα) (panel b). The fit was done on an equidistant

grid of α1 values from α1 = 0 to 1 degree. Figure reprinted with permission

from Ref. [24].
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sets [200] has been extended to be compatible with centrosymmetric linear

molecules such as 12C2H2. This type of molecule is formally described by the

D∞h symmetry group, but as TROVE can only work with finite symmetries

a finite Dnh (with arbitrary user-defined n) is used instead, with a value of n

large enough to cover all required excitations (up to Lmax = Kmax), such that

n = 2Lmax + 1 or n = 2Lmax + 2 [55] (depending on whether n is odd or even).

The TROVE symmetrisation scheme was extended by including the vibra-

tional angular momentum operator L̂z into the set of commuting operators,

allowing the classification of basis sets based on vibrational angular momen-

tum quantum number, L.

The (3N−6) approach to dealing with linear molecules has also been in-

vestigated. Although it is not currently fully implemented into TROVE, work

is in progress with this aim in mind. There is also potential for implementation

into general nuclear motion routines. A full comparison of this method against

the (3N−5) approach, regarding calculation time and accuracy, would be an

interesting investigation to make.



Chapter 8

Variational Calculations of

Acetylene

8.1 Ab Initio Calculations (MOLPRO)

Ab initio electronic structure calculations were introduced in Section 2.3. The

electronic structure package MOLPRO [110] was used to solve, on a large

grid of nuclear geometries, the electronic energy of Eq. (2.9), and the dipole

moment which is required for calculations of transition strength (Eq. (2.12)).

The resulting grid of electronic energies and dipole moments were used in the

construction of potential energy surfaces (PES) and a dipole moment surface

(DMS) for C2H2, with details given in Sections 8.2 and 8.3, respectively.

8.2 Potential Energy Surfaces

Potential energy surfaces for acetylene are generally either local, appropri-

ate for describing ro-vibrational motion close to the linear equilibrium struc-

ture [351, 335, 352, 353, 354], or they are designed to be more global [355, 42,

356, 310] in order to properly describe the isomerisation to vinylidene at around

15,000 cm-1 [109, 40]. The set of coordinates used to describe the potential are

to some extent determined by this choice; curvilinear coordinates have been

thought to represent a non-isomerising potential energy surface (PES) more

smoothly than rectilinear [357, 109], though the difference is small in the region

very close to equilibrium geometry; while coordinates such as diatom-diatom
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are thought to handle the isomerisation process more appropriately [38].

The use of a Taylor series expansion in an appropriate set of coordinates

to represent the potential can only be justified for the local surfaces, restricted

to accurately describe the area around one potential minimum only at which

the expansion is taken; a linear configuration in this case. This is the approach

which has been taken in this work (the isomerisation to vinylidene is not con-

sidered here). The Taylor series expansion of a PES is often truncated at 4th,

6th or 8th order.

8.2.1 Linearised (3N−5) Potential Energy Surface

In the TROVE rigid approach, all components of the Hamiltonian operator are

represented as a Taylor expansion in terms of linearised coordinates (or some

1D functions of them) around the equilibrium configuration, leading to a sum-

of-product form designed to facilitate the matrix elements calculations via 1D-

integrals. This includes the potential energy function V (ξξξ ). Since the PES is

usually provided in terms of some different user-chosen curvilinear coordinates,

TROVE uses a numerical finite difference method (with quadruple-precision)

to re-expand V (ξξξ ) in terms of the TROVE-coordinates ξ lin
λ

.

The geometrically defined coordinates ξξξ (R, r1, r2, θ1, θ2 and τ) used to

sample the ab initio PES were transformed to the linearised TROVE coordi-

nates ξ lin
λ

using the Cartesian coordinate representation as an intermediate via

the chain:

ξξξ →{rrri}→ ξξξ
lin

, (8.1)

with the transformation from ξξξ
lin → {rrri} given by Eqs. (7.5–7.7) via the A-

matrix representation. Here {rrri} represents the Cartesian coordinates of an

atom i in the molecular coordinate system defined using the Eckart-frame. This

transformation is under-defined since there are only six coordinates ξλ being

used to obtain seven ξ lin
µ . As an additional condition we use the requirement

that the x-axis should bisect the dihedral τ angle. Since the potential expansion

is built to be invariant for any rotation around the z axis, this requirement does

not affect the expansion parameters.
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For C2H2 it was found that this numerical re-expansion procedure can

behave very unstably, leading to extremely large expansion parameters and

numerical instability. This is apparently related to the fact that if the C2H2

potential function is represented in the original ab initio coordinates, it effec-

tively depends on six (3N−6) vibrational coordinates only, but in TROVE it

is represented in terms of seven (3N−5) dependent coordinates. The expan-

sion parameters are therefore strongly correlated, which leads to a numerical

instability in the finite differences.

It was therefore decided to avoid the TROVE re-expansion by prepar-

ing the PES in terms of the TROVE linearised coordinates ξξξ
lin

directly (see

Section 7.1.1). Thus, the potential energy function of C2H2 currently used in

TROVE is given by:

V (χχχ) = ∑
i, j,k,...

fi, j,k,...χ
i
1χ

j
2 χ

k
3 · · · , (8.2)

where χλ are given by:

χ1 = 1− exp
(
−a∆Rlin

)
, (8.3)

χ2 = 1− exp
(
−b∆rlin

1

)
,

χ3 = 1− exp
(
−b∆rlin

2

)
,

χ4 = ∆x1,

χ5 = ∆y1,

χ6 = ∆x2,

χ7 = ∆y2.

Here a and b are two Morse parameters and the displacements are taken

from the equilibrium values of R, r1 and r2, respectively. The equilibrium

values (at the linear configuration) of xi and yi (i = 1,2) are zero.

As discussed in Section 7.1, the ground electronic state of acetylene has

an equilibrium structure of linear configuration and is therefore part of the

D∞h point group. The potential energy must therefore be invariant under the

action of operations which are a part of this group, e.g. to any rotation around



8.2. Potential Energy Surfaces 154

z. As TROVE tends to use discrete symmetries (see Section 7.1.2), this is

achieved by making it invariant to the operations of Dnh instead. While the

process of symmetrising the ro-vibrational basis set requires Dnh with a value

for n such that n≥ 2Lmax + 1 (odd n) or n≥ 2Lmax + 2 (even n) [55], the same

constraint does not need to be applied to the symmetrisation of parameters

to be used in the potential energy or dipole moment fitting routines. Instead,

the required n for Dnh appears to be related to the expansion order of the

potential; for a potential expanded up to 8th order, for example, a symmetry

of D12h is sufficient, with identical results for higher values of n. The operations

of the D12h group were therefore used to form the symmetrised 3N−5 potential

energy function, expanded up to 8th order.

The ab initio electronic structure calculations used in this work were per-

formed using MOLPRO [110] at a CCSD(T)-F12c level of theory (this has a

computational cost close to that of conventional CCSD, while retaining the ac-

curacy of CCSD(F12) [358]) for the PES with a VQZ-F12 basis set [359, 360].

They were carried out on a grid of 66 000 points spanning the 6D nuclear-

geometry coordinate space up to 50 000cm-1, defined by a set of 6 curvilinear

bond length and bond angle coordinates (as given in Figure 6.2).

When fitting V (ξξξ ) in Eq. (8.2)-(8.3) to the ab initio energies, each grid

point i was weighted using the method outlined in Ref. [361], with a higher

weight, wi, given to points with lower energy:

wi =
si

Ẽw
i

, (8.4)

si =
{tanh[−α(Vi−V top)]+ 1.002002002}

2.002002002
, (8.5)

Ẽw
i = max(Vmax,Vi). (8.6)

Here, Vi is the potential energy, in cm-1, above the equilibrium value for each

point i, α is a parameter which can be varied, V top is the ‘switching energy’,

with si switching between 0.001 for energies much above V top and 1 for those
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much below, and Ẽw
i is included in order to avoid low energy noise being too

much of an influence, giving a bias against points below Vmax. In the case of the

linearised (3N−5) ab initio potential energy fit used in this work, the following

parameters were used: α = 6 x 10−4 cm-1, Vtop = 20 000 cm-1, Vmax = 6000 cm-1.

A least squares fitting routine was used to fit the coefficients fi, j,k,... in

Eq. (8.2) to the ab initio energies, using a grid of 46 986 ab initio points

covering up to 14 000 cm-1, weighted as in Eq. (8.4)-(8.6), with a weighted root-

mean-square (rms) error of 3.98 cm-1 and an un-weighted rms of 15.65 cm-1,

using 358 symmetrised parameters expanded up to 8th order. The potential

energy function is provided as supplementary material to Ref. [24] as a Fortran

program.

The Born Oppenheimer Diagonal Correction (BODC) is usually neglected

in the Born-Oppenheimer approximation. It has been shown that the worst

case for the BODC, for H2, gives a correction of 16 cm-1, whereas for acetylene

this is estimated to be less than 1 cm-1 (Refs. [362], [363]). This has not been

taken into account in the present work, but for greater spectroscopic accuracy

this and other higher order corrections [364] could be taken into account in the

future.

8.2.2 Non-Linearised (3N−5) Potential Energy Surface

Different coordinates were explored with which to represent the potential func-

tion. The (3N− 5) fit was found to improve when bond lengths (R, r1 and

r2) instead of linearised coordinates (Rlin, rlin
1 and rlin

2 ) were used for the z-

coordinates (with a weighted rms error of 0.69 cm-1 and an un-weighted rms

of 7.40 cm-1 for the same grid of weighted ab initio points up to 14 000 cm-1);

see Figure 8.1 for the residuals of both (3N − 5) fits (using linearised and

non-linearised coordinates) as a function of energy. As mentioned above, this

choice has a degeneracy in the definition of an instantaneous geometry for the

interbond angles θi < 90◦ and > 90◦. It should be noted that the θi > 90◦ ge-

ometries are found to occur at energies less than the isomerisation to vinylidene

at around 15,000 cm-1 (Refs. [109], [40]) and are therefore likely to be impor-
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tant for ro-vibrational calculations. The linearised-coordinate alternative does

not have this degeneracy issue, though it does have the aforementioned prob-

lem with being less intuitive in modelling vibrational stretches. Nevertheless,

the linearised-coordinate fit to the potential energy function of Eq. (8.4)-(8.6)

is reasonable and the use of a potential function which has been fit using

linearised coordinates avoids any re-expansion, as these are exactly the coor-

dinates which are used by TROVE. This makes this potential function suited

for use with TROVE, but not particularly useful for the community. A PES

fitted using the standard six curvilinear coordinates R, r1, r2, θ1, θ2, and τ ,

with the χ-expansion variables (see Section 8.2.3) is therefore also provided as

supplementary data for the publication associated with this work, Ref. [24].

Figure 8.1: A comparison of the residuals of the (3N−5) linearised coordinate

PES fit with the (3N− 5) non-linearised coordinate PES fit using the same

grid of ab initio points

8.2.3 (3N−6) Potential Energy Surface

A Fortran least squares fitting routine was used to fit the ab initio points

described in Section 8.2.1 to functions of a Morse-oscillator form, as given
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below for the 3N−6 set of internal valence coordinates (which are illustrated

in Figure 6.2):

V (yyy) = ∑
i, j,k,...

Fi, j,k,...yi
1y j

2yk
3 · · · , (8.7)

where

y1 = 1− e−a1(R−Re), (8.8)

y2 = 1− e−a2(r1−re),

y3 = 1− e−a2(r2−re),

y4 = sinθ1,

y5 = sinθ2,

y6 = cosτ.

The use of Morse functions for the stretches has been shown to give a more

accurate representation on the condition that the two atoms involved are suit-

ably light [38, 365], as is the case for the bonds in the acetylene molecule. Care

was taken to comply with the relevant symmetry constraints on the expansion

coefficients Fi, j,k,..., for example if either of the bending angles were being ex-

panded to the power of zero then the dihedral angle, τ should not be expanded

to any power greater than zero, as for linear geometries it is undefined.

The same grid of 46 986 ab initio points are used as for the 3N−5 poten-

tial of Section 8.2.1, weighted as per Eq. (8.4–8.6), with the same weighting

parameters and equilibrium values used as in the (3N− 5) fit. The (3N− 6)

fit, with the potential function expanded and truncated at 8th order, gives a

weighted rms error of 1.30 cm-1 and an un-weighted rms of 1.49 cm-1, up to

14,000 cm-1 using 927 parameters. Again, the potential energy function is pro-

vided as supplementary material for Ref. [24] as a Fortran program. As can be

seen in Figure 8.2, the residuals are smaller than for the fit using the (3N−5)

linearised coordinates, with an increase as a function of ab initio energy, as

would be expected as a result of the weighting of Eq. (8.4-8.6). The better

fit to the ab initio energies using the (3N−6) model is due to the curvilinear

coordinates being chemically more intuitive to describe the internal stretching
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and bending motion of the molecule than the rectilinear-type coordinates. As

described previously, the re-expansion of this 3N− 6 = 6 dimensional surface

in terms of the set of 3N−5 = 7 coordinates used in TROVE is not currently

stable, which is why this potential fit is not used in the calculations of Section

8.4, but it may be of use with other general nuclear motion routines, including

the curvilinear version of TROVE; this version of the potential was used in

testing the (3N−6) model outlined in Section 7.2.
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Figure 8.2: A comparison of the residuals of the (3N−5) linearised coordinate

PES fit of Section 8.2.1 with the (3N−6) coordinate PES fit, both expanded

up to 8th order and using the same equilibrium values and the same grid of ab

initio points

8.3 Dipole Moment Surfaces: (3N − 5) Lin-

earised Coordinates

The ab initio electric dipole moment components, µα (α=x,y,z), were com-

puted using the finite difference method in MOLPRO, on a grid of 66 000 points

spanning the 6D nuclear-geometry coordinate space covering up to 50 000 cm-1,

defined by a set of 3N− 6 = 6 curvilinear bond length and bond angle coor-
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dinates (as given in Figure 6.2), at CCSD(T) level of theory and using an

aug-cc-PVQZ basis set. The dipole moment surface was fit using the same set

of 3N−5 coordinates as for the 3N−5 potential of Section 8.2.1 (as illustrated

in Figure 7.1) to the following function:

µx(χχχ) = ∑
i

Fx
i, j,k,...χ

i
1χ

j
2 χ

k
3 . . . , (8.9)

µy(χχχ) = ∑
i

Fy
i, j,k,...χ

i
1χ

j
2 χ

k
3 . . . , (8.10)

µz(χχχ) = ∑
i

Fz
i, j,k,...χ

i
1χ

j
2 χ

k
3 . . . . (8.11)

where χλ are given by:

χ1 = ∆Rlin, (8.12)

χ2 = ∆rlin
1 ,

χ3 = ∆rlin
2 ,

χ4 = ∆x1,

χ5 = ∆y1,

χ6 = ∆x2,

χ7 = ∆y2.

Use was made of discrete symmetries (see Section 7.1.2), and the three

components of the dipole were expanded up to 7th order and symmetrised

according to the operations of D12h (D12h is sufficient for the same reasons

as the 3N− 5 potential energy symmetrisation of Section 8.2.1). The three

Cartesian components of the dipole moment, µx, µy, µz, transform differently

to one another (µx and µy as E1u and µz as A2u for Dnh(M)): [333] the µx and

µy components share the corresponding expansion parameters, while that the

parameters for the µz component are independent.

Figure 8.3 gives the residuals of the dipole moment surface fit up to

14,000 cm-1 (for the x, y and z-components of the dipole) using the (3N− 5)

linearised coordinates described in Section 8.2.1 and illustrated in Figure 7.1.
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The overall rms of the fit up to 14,000 cm-1 was 0.54 ×10−3 Debye (weighted

with the same parameters as the potential energy fits, as per Eq (8.4)-(8.6)),

and 0.75 ×10−3 Debye (unweighted), on a grid of 46 714 ab initio points, us-

ing 459 symmetrised parameters (259 and 200 for the x/y and z components,

respectively). The dipole moment function is provided as supplementary ma-

terial to Ref. [24] as a Fortran program.
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Figure 8.3: Residuals of the dipole moment surface fit up to 14,000 cm-1 (for

the x, y and z-components of the dipole) using the set of (3N− 5) linearised

coordinates of Figure 7.1.

8.4 Ab initio Line List

8.4.1 Variational Calculations

The (3N − 5) model outlined in Section 7.1 has been fully implemented in

TROVE. Here, we give an application to 12C2H2 in the form of an ab initio

line list, with a spectra calculated at 296 K in order to compare to available

data. The calculated ab initio potential energy and dipole moment surfaces

used for this linelist are presented in Sections 8.2.1 and 8.3.

The polyad number for acetylene is typically given by that of Eq. (3.9).
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However, due to a slower than expected convergence of the stretches, most

likely due to the linearised coordinates that are employed, a different definition

of polyad number was used to control the size of the primitive and contracted

basis sets in Eq (7.9):

P = 2n1 + n2 + n3 + n4 + n5 + n6 + n7 ≤ Pmax, (8.13)

with Pmax=18 for the primitive basis set and reduced to 16 after contraction.

Here, the vibrational modes are given in TROVE notation, with n1 corre-

sponding to the excitation of the C–C stretching mode, n2 and n3 representing

the C–H1 and C–H2 stretching modes and n4, n5, n6 and n7 representing the

bending modes. The stretching primitive basis functions φn1(ξ1), φn2(ξ2) and

φn3(ξ3) are generated using the Numerov-Cooley approach [50, 339, 340] as

eigenfunctions of the corresponding 1D reduced stretching Hamiltonian oper-

ators Ĥ(1D)
i , obtained by freezing all other degrees of freedom at their equi-

librium values in the J = 0 Hamiltonian. For the bending basis functions,

φn4(ξ4), . . . ,φn7(ξ7), 1D Harmonic oscillators are used. These basis sets are

then divided into three sub-groups:

φ
(1D)
n1 (ξ1) = φn1(ξ1), (8.14)

φ
(2D)
n2n3 (ξ2,ξ3) = φn2(ξ2)φn3(ξ3), (8.15)

φ
(4D)
n4n5n6n7(ξ4,ξ5,ξ6,ξ7) = φn4(ξ4)φn5(ξ5)φn6(ξ6)φn7(ξ7). (8.16)

The corresponding eigenvalue problems are solved for the three reduced Hamil-

tonian operators using these basis sets: stretching Ĥ(1D) and Ĥ(2D), and bend-

ing Ĥ(4D). The reduced Hamiltonians Ĥ(ND) (N = 1,2,4) are constructed by

averaging the total vibrational Hamiltonian operator Ĥ(J=0) over the other

ground vibrational basis functions, see Ref. [55] and Section 7.1.2.

Energy cutoffs of 50,000 cm-1 and 30,000 cm-1 were set for the primitive

and contracted matrices (see Section 7.1.2), respectively, while the overall en-

ergy cutoff was set to 18,000 cm-1. The D24h(M) molecular symmetry group
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was used, which includes irreducible representations A1g, A2g, B1g, B2g, A1u,

A2u, B1u, B2u, E1g, E1u, E2g, E2u... E11g, E11u. As mentioned previously, only

the A-type symmetry ro-vibrational states are allowed by nuclear statistics;

the statistical weights are 1 for A1g and A1u (para), 3 for A2g and A2u (ortho),

and 0 for everything else [56, 191]. The kinetic energy and potential energy

expansions are truncated at 2nd and 8th order, respectively (the kinetic energy

terms of higher than 2nd order appear to contribute very little to the calculated

ro-vibrational energies, with expansion to higher orders becoming more com-

putationally demanding). The maximum value for the z-projection of the vi-

brational angular momentum, Kmax = Lmax, used to build the multidimensional

basis sets was 8. The equilibrium bond lengths were set to 1.20498127 Å and

1.053024743 Å for the C-C and C-H bonds, respectively. Calculations were

performed up to a maximum value of J=58, with transitions calculated up

to 10,000 cm-1, with a maximum lower energy of 4,000 cm-1 and a maximum

higher energy of 14,000cm-1 (transitions to higher J were not within this energy

window), in order for a comparison to be made against a recent line list de-

tailed below. These calculations have resulted in an ab initio linelist consisting

of 13.9 million transitions between 2.7 million states.

8.4.2 Comparison to Other Data

A recent line list, ASD-1000 [44], has been calculated by Lyulin and Perevalov

up to 10,000 cm-1 and J=100, based on the use of an effective Hamiltonian

fit to experimental data and extrapolated to higher energies. The energies

and intensities at room-temperature agree reasonably well with those in the

HITRAN-2016 [88] database (see Refs. [44], [45] for detailed comparisons), and

ASD-1000 has been used to update the 2016 HITRAN release in the low energy

region [88, 235]. Figure 8.4 gives a comparison of the linear-TROVE ab initio

room-temperature line list with ASD-1000, and Figure 8.5 shows a compari-

son of this work against the data for 12C2H2 in HITRAN-2016 [88], both at

a temperature of 296 K. Figures 8.6 and 8.7 give more detailed comparisons

of the fundamental ν3 and ν5 bands with data from HITRAN-2016 [88], again
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Figure 8.4: Comparison of TROVE room-temperature ab initio spectrum

(with linearised coordinates, up to 8th order expansion) with ASD-1000 [44],

up to 10,000 cm-1 (TROVE calculations up to J=58; transitions to higher J

were not within the specified energy window of below 10,000 cm-1).

just giving stick spectra at room-temperature. No broadening coefficients or re-

finement of the ab initio potential energy surface to experimentally determined

energies have been considered at this stage. Table 8.1 gives a comparison of

the fundamental and some combination vibrational band centers of this work

against those presented in Ref. [43] (calculated Ẽcalc and experimental Ẽobs)

and Table 8.2 gives a comparison of band intensities from this work with those

presented in Ref. [366].

8.4.3 Discussion of Results

A refinement procedure on the equilibrium bond-length geometry can vastly

improve the accuracy of the rotational transitions, but generally is balanced

by a loss of accuracy on the vibrations [368]. The calculations outlined in this

chapter have had the equilibrium bond-length geometry adjusted using the

Newton method to give a good rotational structure, which may have negatively

affected the vibrational band centers. Fortunately, there are other methods

which can improve this, such as empirically refining the potential energy surface
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Figure 8.5: Comparison of the TROVE room-temperature ab initio spectrum

(using linearised coordinates, up to 8th order expansion) with the 12C2H2 data

from HITRAN-2016 [88], up to 10,000 cm-1 (TROVE calculations up to J =

58; transitions to higher J were not within the specified energy window of

below 10,000 cm-1).
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Figure 8.6: Comparison of the region around the ν3 band from the TROVE

room-temperature ab initio spectrum (using linearised coordinates, up to 8th

order expansion) with the same band using 12C2H2 data from HITRAN-

2016 [88].
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Figure 8.7: Comparison of the ν5 band from the TROVE room-temperature

ab initio spectrum (using linearised coordinates, up to 8th order expansion)

with the same band using 12C2H2 data from HITRAN-2016 [88].
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Table 8.1: Comparison of the ab initio (before refinement) fundamental and

some combination vibrational band centers of this work against the calculated

energy term values Ẽcalc (cm-1) presented in Urru et al. [43] and experimental

energy term values Ẽobs (cm-1) from Refs. [302], [56] and [43]. The obs.-calc.

value given is the difference between Ẽobs and Ẽcalc (cm-1) (this work).

Band Symmetry Ẽobs Ẽcalc [43] Ẽcalc (this work) obs.-calc.

ν1
4 E1g / Πg 611.69a 602.9 610.55 1.14

ν1
5 E1u / Πu 729.15a 722.2 732.78 −3.63

2ν0
4 A1g / Σ+

g 1230.39b 1203.5 1226.89 3.5

(ν4 + ν5)0 A2u / Σ+
u 1328.07b 1311.6 1330.73 −2.66

2ν0
5 A1g / Σ+

g 1449.11b 1448.6 1455.01 −5.9

ν0
2 A1g / Σ+

g 1974.32b 1950.7 1974.47 −0.15

ν0
3 A2u / Σ+

u 3294.84b 3241.1 3295.36 −0.52

ν0
1 A1g / Σ+

g 3372.84b 3371.1 3365.04 7.8

ν3 + ν1
4 E1u / Πu 3898.3c 3867.7 3899.69 −1.39

aRef. [302]; bRef. [56]; cRef. [43]

[369] or employing the empirical basis set correction (EBSC) [21], where the

calculated vibrational band centers are replaced by their experimental values.

These will both be addressed in Chapter 9.

As expected, there is some obvious shifting of the band centers of the

calculated linelist when compared to HITRAN-2016, as illustrated in Figures

8.6 and 8.7, but the overall rotational structure is good. As can be seen in

Table 8.1, the ν1 band gives the largest difference when compared to experi-

mental data out of all the fundamental bands. The band intensities of Table 8.2

are in general too high when compared to experimental values; (2ν4 + ν5)1 II

in particular stands out as having a very large percentage difference in band

intensity.

8.5 Chapter Summary

This chapter has outlined the ab initio electronic-structure calculations for

acetylene which were computed using MOLPRO and used to fit various po-



8.5. Chapter Summary 167

Table 8.2: Comparison of vibrational band intensities (Scalc) between this work

(tw) and Ref. [366], along with Sobs, also from Ref. [366]. Intensities were con-

verted from cm−2atm−1 to cm/molecule using the conversion of 1 cm−2atm−1

at 296 K = 4.033× 10−20 cm/molecule [367]. The observed values of the

(2ν4 + ν5)1 I and (2ν4 + ν5)1 II bands are cited in Ref. [366] as from private

communication with G. Di Lonardo. O−C
O gives the relative obs.-calc. (Sobs-

Scalc/Sobs) percentage difference between this work and the observed values

presented in Ref. [366]. The band centers (ν̃) are in cm-1.

Band Sym ν̃ [366] ν̃ (tw) Scalc [366] Sobs [366] Scalc (tw) O−C
O (%)

ν1
5 E1u / Πu 729.15a 732.85 2.37×10−17 2.37×10−17 2.39×10−17 −1.04

(ν4 + ν5)0 A2u / Σ+
u 1328.07b 1330.49 2.54×10−18 2.54×10−18 3.78×10−18 −48.77

(2ν4 + ν5)1 II E1u / Πu 1941.2c 1945.12 5.64×10−21 5.64×10−21 3.70×10−20 −556.09

(2ν4 + ν5)1 I E1u / Πu 1960.9c 1960.02 2.02×10−21 1.61×10−21 1.17×10−22 92.77

ν0
3 A2u / Σ+

u 3294.84b 3295.19 4.23×10−18 4.39×10−18 9.01×10−18 −104.96

aRef. [56]; bRef. [366]

tential energy surfaces and a dipole moment surface for C2H2. These are

published as part of the Supplementary Data of Ref. [24] and therefore can be

used by the spectroscopic community. An ab initio linelist has been calculated

in TROVE for 12C2H2, which makes use of the 3N− 5 linearised-coordinate

PES and DMS. Comparisons are made with other available room-temperature

spectra of acetylene. A further discussion of the results of this chapter, along

with calculations towards a new high-accuracy high-temperature linelist which

are currently in progress and will be published in due course, can be found in

Chapter 9.



Chapter 9

The aCeTY linelist

The implementation of the (3N−5)-approach to dealing with linear molecules,

which was outlined in Section 7.1, has been fully implemented in TROVE,

and was used to calculate an ab initio ro-vibrational linelist for acetylene (in

Chapter 8) which covers a large range of rotational and vibrational excita-

tions. There are a few improvements to be made in order to make this linelist

useful to the atmospheric characterisation community, largely concerned with

accuracy and temperature dependence. These improvements are currently on-

going; they will be detailed in this chapter and the resulting linelist (named the

aCeTY linelist, after Chubb, Tennyson and Yurchenko) will be published in due

course. Section 9.1 outlines the details of the variational calculations currently

in progress, with some discussion on the expected temperature-dependence of

the aCeTY linelist. It was previously mentioned that an empirical refinement

of the PES used in such variational calculations will improve the accuracy

of the computed eigenvalues and eigenfunctions; this procedure is outlined in

Section 9.2, with an example given for demonstration purposes. In order to

ensure optimum accuracy, the band centres should also be replaced with the

experimental values, as discussed in Section 9.3. The intensities are discussed

in Section 9.4.
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9.1 Variational Calculations

The ab initio potential energy surface which is being used for these calculations

is the same as that presented in Section 8.2.1, with the same weights and fitting

parameters. It is now being refined to empirical values, as will be described in

Section 9.2. This will not only lead to an improvement in the accuracy of the

energy levels and line positions, but in the eigenfunctions which have an effect

on the computed intensities (see Section 9.4).

The polyad number being used for the variational calculations of acety-

lene in TROVE is given by Eq. (8.13), with Pmax=18 for the primitive basis

set and reduced to 16 after contraction, the same as in Section 8.4. Slightly

higher energy cutoffs of 60,000 cm-1 and 50,000 cm-1 (instead of 50,000 cm-1

and 30,000 cm-1 for the ab initio linelist) are being used for the primitive and

contracted matrices, respectively, while the overall energy cutoff is being set

to 18,000 cm-1. Preliminary calculations indicate that the energies are better

converged (and therefore closer to experimental values) using these larger val-

ues of energy cutoffs for the primitive and contracted matrices. The D24h(M)

molecular symmetry group is being used, and the kinetic energy and potential

energy expansions are truncated at 2nd and 8th order, respectively (the kinetic

energy terms of higher than 2nd order appear to contribute very little to the

calculated ro-vibrational energies, with expansion to higher orders becoming

more computationally demanding). The maximum value for the z-projection

of the vibrational angular momentum, Kmax = Lmax, used to build the multidi-

mensional basis sets is 8. Tests are being run in parallel in order to assess the

feasibility of using a higher value of Kmax = Lmax, and the effect this will have

on the completeness of the linelist at particular temperatures. The equilibrium

bond lengths are set to 1.20498127 Å and 1.06295428 Å for the C-C and C-H

bonds, respectively. Calculations will be performed up to a high value of J,

expected to be at least J = 100, which will be determined by the maximum val-

ues of lower and upper energies used in the linelist calculations; these will have

an effect on the temperature dependence of the linelist, as discussed below.
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9.1.1 Temperature Dependence

The range of energy levels included in linelist calculations can be increased in

order for the linelist to be complete up to higher temperatures. Taking the

linelist presented in Chapter 8 as an example, the completeness up to a variety

of temperatures as a function of the maximum value for the lower energy

level used in linelist calculations is given in Table 9.1 for a maximum lower

energy (Ẽ(max)
low ) of 4,000 cm-1, Table 9.2 for Ẽ(max)

low =6,000 cm-1, and Table 9.3

for Ẽ(max)
low =8,000 cm-1. All maximum upper energy levels are 10,000 cm-1

above the maximum lower energy level value. The temperature dependence

can be found by calculating the partition function (see Section 3.7) up to the

lower energy level cut-off as a percentage of the total partition function which

includes all states involved in a linelist calculation. The partition functions

(PF) for the higher energy values in Tables 9.1, 9.2, 9.3 were calculated using

TIPS (Total Internal Partition Sums) [196] and the partition function for the

lower energy value using ExoCross [168]. A linelist is generally considered to be

“complete” if the ratio of the partition function of the lower energy states to the

partition function of all energy states involved in a linelist calculation is > 90%.

It can be seen from Table 9.1 that the ab initio linelist presented in Chapter 8,

which used maximum lower and upper energies of 4,000 cm-1 and 14,000 cm-1,

respectively, is estimated to be complete up to around 800 K. The aCeTY

linelist is being calculated with a maximum energy cut-off of 18,000 cm-1;

using a maximum lower energy level value of 8000 cm-1 is expected to lead to

a linelist which is complete up to around 1200 K (see Table 9.3). There may,

however, be some effect based on the choice of Kmax = Lmax; tests for this are

in progress, the results of which will be published in due course.

Figure 9.1 illustrates the temperature-dependence of acetylene spectra,

using the ab initio linelist of Chapter 8, with cross-sections computed using

ExoCross [168] at a variety of temperatures between 296–1000 K. The cross-

sections are calculated at a low-resolution of 1 cm-1 for demonstration purposes.
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Table 9.1: The completeness of the ab initio linelist of Chapter 8 at a variety of

temperatures for a maximum lower energy level value of 4,000 cm-1, measured

using the calculated partition function (PF).

Temp (K) PF up to 4,000 cm-1 PF up to 14,000 cm-1 % complete

200 245.55 246.04 99.80

300 420.98 422.69 99.60

400 694.52 699.40 99.30

500 1117.09 1130.50 98.81

600 1744.46 1784.84 97.74

700 2630.00 2752.77 95.54

800 3814.29 4153.51 91.83

900 5319.10 6142.20 86.60

1000 7147.00 8919.12 80.13

9.2 Empirical Refinement of the PES

An empirical refinement of a potential energy surface (PES) is a vital compo-

nent in the procedure of variationally calculating a linelist, in order to maximise

the accuracy of the computed energy levels and line positions. As previously

mentioned, work is in progress for refining the PES which is being used in

the calculations of the aCeTY linelist. It should be noted that a PES which

has been refined to empirical values using the method outlined in this section

is only valid for use in TROVE, typically using the same basis set as in the

original calculations.

9.2.1 Empirical Refinement Theory

The refinement procedure (see, for example, Ref. [370]) is carried out under the

assumption that a reasonable PES has already been fit and used to determine

a set of variationally determined energy levels. In this case, a correction is

added to the PES in terms of a set of internal coordinates ξ :

∆V = ∑
i jk...

∆ fi jk...(ξ
i
1ξ

j
2 ξ

k
3 ), (9.1)
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Table 9.2: The completeness of the ab initio linelist of Chapter 8 at a variety

of temperatures for a maximum lower energy level value of 6,000 cm-1.

Temp (K) PF up to 6,000 cm-1 PF up to 16,000 cm-1 % complete

200 245.55 246.04 99.80

300 420.98 422.69 99.60

400 694.59 699.40 99.31

500 1118.56 1130.50 98.94

600 1757.05 1784.84 98.44

700 2690.02 2752.77 97.72

800 4011.52 4153.51 96.58

900 5822.66 6142.20 94.80

1000 8221.58 8919.12 92.18

1100 11293.90 12739.64 88.65

1200 15105.92 17927.30 84.26

where ∆ fi jk... are the refined parameters, given as correction terms to the ex-

pansion coefficients of the original PES, with the symmetry of the molecule

taken into account in the same way as for the original ab initio PES. The

eigenfunctions of the “unperturbed” Hamiltonian are used as basis functions

when solving the new ro-vibrational eigenproblems with the correction ∆V to

the PES included. This process is performed iteratively in TROVE, with the

fitting procedure making use of empirical energy levels which should be added

in gradually, according to the level of confidence placed in them.

The empirically determined energy levels which are used in the PES re-

finement procedure are weighted according to the level of confidence in their

experimental assignment. The ab initio energies which were used to fit the

intitial PES (see Section 8.2) are also included in the refinement procedure in

order to constrain the shape of the refined PES to the ab initio PES. In the case

of acetylene, the experimental energy levels that resulted from the MARVEL

analysis of Chapter 5 are suitable for use in such an empirical refinement of
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Table 9.3: The completeness of the ab initio linelist of Chapter 8 at a variety

of temperatures for a maximum lower energy level value of 8,000 cm-1.

Temp (K) PF up to 8,000 cm-1 PF up to 18,000 cm-1 % complete

200 245.55 246.04 99.80

300 420.98 422.69 99.60

400 694.59 699.40 99.31

500 1118.58 1130.50 98.95

600 1757.43 1784.84 98.46

700 2693.59 2752.77 97.85

800 4030.95 4153.51 97.05

900 5895.91 6142.20 95.99

1000 8434.94 8919.12 94.57

1100 11808.32 12739.64 92.69

1200 16181.17 17927.30 90.26

1300 21713.51 24884.76 87.26

1400 28551.40 34112.67 83.70

the PES. As mentioned in Section 3.2, good quantum numbers for acetylene

are rotational angular momentum quantum number J and symmetry Γ. These

are therefore the criteria used to match energy levels from the energy levels in

the supplementary data of Chubb et al. [56]; see, for example, Table 5.6. An

important parameter in the MARVEL energy level output of Chapter 5 and

the supplementary information of the associated publication [56] is NumTrans,

which gives the number of transitions linking a particular state to other energy

levels. The higher the number of linking transitions, the higher the confidence

which should be given to that empirical energy level.

9.2.2 Empirical Refinement Example

For computational reasons, calculations using a slightly smaller basis set than

would ideally be used to compute a high-temperature linelist were used in

order to demonstrate the effect of a refinement procedure on acetylene. This
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Figure 9.1: An illustration of how the spectra of acetylene varies with tem-

perature, using the ab initio linelist of Chapter 8, with low-resolution (1 cm-1)

cross-sections computed using ExoCross [168] at a variety of temperatures be-

tween 296–1000 K.

procedure is currently being repeated for a higher basis set, the details of which

are given in Section 9.1. In the current example of a refinement procedure,

Pmax=18 for the primitive basis set and reduced to 14 after contraction, with

Kmax = Lmax=6. The resulting energy levels before the refinement procedure

are therefore expected to be less well converged than those currently being

calculated for the aCeTY linelist. Energy levels which are better converged

initially are expected to yield a more accurate set of energy level values after

the refinement procedure. Table 9.4 gives the vibrational (J = 0) band centres

calculated using TROVE before and after the refinement procedure for the

PES being used in the aCeTY linelist, where 600 empirical levels up to J = 3

were included in the fitting procedure. A higher weight was given to empirical
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levels with a higher value of NumTrans in the MARVEL dataset. If there is

only one or two transitions linking an energy level in the MARVEL dataset

then it is either not included in the refinement procedure, or initially given a

very low weight. A refinement procedure would typically begin with adding

only those levels with the highest level of confidence, often those associated

with lower energies, with more levels added in iteratively. There are many

more energy levels from the MARVEL analysis which can be included in a

refinement procedure; their inclusion would be expected to improve the obs-

calc (o-c) values further than those presented in Table 9.4, which is the method

currently being implemented for the aCeTY linelist.

Table 9.4: Vibrational energy levels (cm−1) from the MARVEL

analysis in comparison with those calculated by TROVE, before

and after the refinement procedure. NT stands for NumTrans, the

number of transitions linking each state in the MARVEL proce-

dure.

(v1v2v3v`4
4 v`5

5 )K Sym NT MARVEL Before o-c After o-c

refinement refinement

(0000000)0 e para 85 0.0000 0.0000 0.0000 0.0000 0.0000

(0002000)0 e para 11 1230.3903 1220.0511 10.3392 1229.8054 0.5849

(000111−1)0 e ortho 19 1328.0735 1321.8021 6.2714 1328.0786 -0.0051

(000111−1)0 f para 9 1340.5507 1330.4179 10.1328 1340.4094 0.1413

(0000020)0 e para 10 1449.1124 1444.2927 4.8197 1449.0934 0.0190

(0100000)0 e para 1 1974.3166 1974.4569 -0.1403 1974.5969 -0.2803

(000311−1)0 e ortho 3 2560.5949 2563.1864 -2.5915 2567.2168 -6.6219

(000222−2)0 e para 1 2648.0145 2648.4115 -0.3970 2653.5144 -5.4999

(000113−1)0 e ortho 3 2757.7979 2757.8146 -0.0167 2760.6425 -2.8446

(0000040)0 e para 1 2880.2201 2879.1872 1.0329 2880.2376 -0.0175

(010111−1)0 e ortho 5 3281.8990 3274.6999 7.1991 3281.6629 0.2361

(0010000)0 e ortho 4 3294.8396 3288.5541 6.2855 3294.8292 0.0104

(010111−1)0 f para 2 3300.6356 3292.3559 8.2797 3299.9300 0.7056

(1000000)0 e para 1 3372.8390 3364.3444 8.4946 3373.6365 -0.7975

(010311−1)0 e ortho 2 4488.8382 4479.1445 9.6937 4488.6778 0.1604

(010222−2)0 f ortho 2 4599.7747 4589.5140 10.2607 4599.1539 0.6208
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(001111−1)0 e para 3 4609.3410 4617.5073 -8.1663 4609.6095 -0.2685

(001111−1)0 f ortho 4 4617.9259 4619.9283 -2.0024 4618.0159 -0.0900

(100111−1)0 e ortho 3 4673.6311 4662.4217 11.2094 4673.7049 -0.0738

(100111−1)0 f para 1 4688.8465 4672.5588 16.2877 4687.5063 1.3402

(010113−1)0 e ortho 1 4710.7398 4707.5611 3.1787 4712.0339 -1.2941

(0010020)0 e ortho 1 4727.0699 4737.8797 -10.8098 4726.6973 0.3726

(1000020)0 e para 1 4800.1373 4789.9229 10.2144 4800.2565 -0.1192

(020111−1)0 e ortho 1 5230.2293 5232.1110 -1.8817 5227.8890 2.3403

(0110000)0 e ortho 2 5260.0218 5251.6062 8.4156 5259.9265 0.0953

(1010000)0 e ortho 4 6556.4648 6537.0513 19.4135 6555.7177 0.7471

(110111−1)0 e ortho 2 6623.1396 6621.6614 1.4782 6623.2491 -0.1095

(101111−1)0 f ortho 1 7853.2771 7842.4354 10.8417 7851.6219 1.6552

(200111−1)0 f para 2 8001.2041 7983.4243 17.7798 8001.5604 -0.3563

(2000020)0 e para 3 8114.3629 8103.0444 11.3185 8117.3805 -3.0176

(1110000)0 e ortho 3 8512.0562 8531.7302 -19.6740 8509.2052 2.8510

9.3 Band Centre Replacement

As mentioned previously (see Chapter 6), basis sets in TROVE are built

from primitive 1D functions, processed through a double layer contraction

scheme, and used to solve the vibrational (J = 0) problem. The resulting

vibrational eigenfunctions can subsequently be used in the construction of a

basis set for the J > 0 calculations. The J = 0 representation can be utilised

to make ro-vibrational calculations in TROVE more tractable [371]. It also

facilitates the option to replace vibrational band centres with experimentally

determined values. This is a necessary procedure if the linelist is to be used in

any high-temperature, high-resolution doppler-shift studies, as were introduced

in Section 2.4.3. The line positions in a linelist typically need to be accurate to

within around 0.1 cm-1 in order to be useful for making a detection in such a

study (private communication, Jane Birkby). The calculations outlined in this

chapter, which are currently being implemented in the production of the high-

temperature aCeTY linelist, will utilise the J = 0 representation in TROVE

in order to replace the band-centres with empirical values. This will maximise
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the accuracy of the resulting line positions.

9.4 Intensities

The calculated intensities for the ab initio linelist which was presented in

Chapter 8 were too high for some bands when compared to experiment. It

is usually expected that weaker bands would be more accurate for ab initio

calculations that for experiment, but that the stronger bands should agree to

within 10–20%. Some tests were done in order to compare the use of two dif-

ferent (3N−5) linearized-coordinate potential energy surfaces, each fit to the

same set of ab initio energies and employing the same set of 3N−5 linearized

coordinates, but each with a slightly different weighting scheme and param-

eters (see Section 8.2.1): these will be labelled PES-1 and PES-2. The fit of

PES-1 has a rms error of 123 cm-1 (unweighted) and 0.019 cm-1 (weighted),

compared to 15.65 cm-1 (unweighted) and 3.98 cm-1 (weighted) for PES-2. A

less computationally demanding small basis set (Pmax=8 for the primitive basis

set and reduced to 6 after contraction, according to Eq. (8.13)) was used in

order to make comparisons between the results of ro-vibrational calculations

using PES-1 and PES-2. As expected, the energies shifted closer towards the

corresponding experimental values for PES-2. There was, however, also an

effect on the intensities (both calculations used the 3N− 5 linearized coordi-

nate DMS presented in Section 8.3), as illustrated by the (ν4 + ν5)0 band in

Figure 9.2. It is apparent that the calculated intensities are very sensitive to

the ro-vibrational eigenfunctions, which are dependent on the quality of the

PES. It is therefore expected that the use of a potential energy surface with

a better fit will lead to some improvement in both the energies of Table 8.1

and the intensities of Table 8.2; the procedure of refining the PES to empirical

energies that is currently in progress (see Section 9.2) is expected to lead to

an improvement of the intensity values of Table 8.2. It may also be necessary

to experiment further with different weights in the DMS fitting procedure, as

this was found to have a large effect on the accuracy of the PES.
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Figure 9.2: An illustration of how different potential energy surfaces, with the

same dipole moment surface, can have an effect on the intensities, in this case

the (ν4 + ν5)0 band (see Table 8.2). PES-1 and PES-2 were fit to the same

3N− 5 function and ab initio points as described in Section 8.2.1, but with

different weighting parameters. A small basis set is used for testing purposes

(Pmax=8 for the primitive basis set and reduced to 6 after contraction, according

to Eq. (8.13)) due to the computational cost of high-basis-set calculations.

9.5 Chapter Summary

Calculations which are in progress in order to compute a high-accuracy, high-

temperature linelist for 12C2H2, known as the aCeTY linelist, are presented in

this chapter. These calculations include an increase in basis-set size (in com-

parison to the ab initio linelist of Chapter 8), a refinement procedure for the

PES, vibrational band-centre replacement, and more accurate intensities. Es-

timations for the temperature dependence of the linelist are made; the aCeTY

linelist is expected to be highly-accurate (to within 0.1 cm-1) and valid up to

temperatures of 1000–1200 K. It will therefore be highly suitable for charac-

terising hot exoplanet and cool stellar atmospheres.
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Conclusions and Future Work

The work outlined in this thesis forms a solid base for any future research

related to ro-vibrational energy and intensity calculations of linear molecules,

and for acetylene in particular. Knowing the properties of a molecule’s sym-

metry group is essential for the process of calculating a linelist; it is necessary

to know the symmetry of a ro-vibrational state in order to compute transition

intensities, and it makes calculations of energies far more efficient and computa-

tionally viable. Chapter 4 was dedicated to the D∞h symmetry group to which

centrosymmetric linear molecules belong, the introduction of the finite-order

Dnh group and how the latter can be used in practical numerical calculations of

ro-vibrational energies and intensities. The available experimental transition

data for 12C2H2 was collated and analysed in detail in Chapter 5, in order to

produce a set of 11 213 empirically-determined energy levels, using the MAR-

VEL technique. Such energy levels are important in improving the accuracy

of an ab initio linelist, as was shown in Section 9.2.

In order to be able to calculate a linelist for acetylene, it was first necessary

to investigate the reasons why standard techniques for non-linear molecules

could not be used; it was shown in Chapter 6 that singularities which would

occur if standard Hamiltonians and number of internal coordinates are used

in the numerical construction of the kinetic energy operator for ro-vibrational

calculations of linear molecules. Two approaches to handling linear molecules

in ro-vibrational calculations were formulated and outlined in Chapter 7: (3N−
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5) and (3N− 6). While the idea behind the (3N− 6) approach is to select a

form of the wave function which removes the singularity in the Hamiltonian,

the (3N−5) approach makes use of a KEO which is already non-singular. The

(3N− 6) approach uses physically more meaningful and intuitive coordinates

for representing the vibrations in the molecule, however the main advantage of

implementing the (3N− 5) approach is that, unlike the (3N− 6) approach or

the use of Legendre polynomial functions, it is compatible with the way that

TROVE constructs and truncates basis sets to represent the full ro-vibrational

wave function and still allows for the KEO to be generated numerically, with

no analytical pre-derivation required (see Ref. [50] for more details). There

is no reason why it should not be compatible with other polyatomic linear

molecules, a supposition which will be put to the test in the future. For these

reasons, the (3N−5) approach has been fully implemented into TROVE along

with a symmetrisation procedure for linear molecules (details in Ref. [55]) and

was used in the calculations presented in Chapter 8 and 9. The (3N − 6)

approach will be integrated into TROVE in the future. The two approaches,

which make use of either 3N − 6 or 3N − 5 internal coordinates, should in

principle lead to completely equivalent eigenvalues; a full comparison of these

two approaches (calculation times, convergence, difference in accuracy) will be

an interesting investigation to make. It is thought that these approaches can be

applied to any chain tetratomic molecule and extended to polyatomic molecules

with more than four atoms, such as linear molecule cyanoacetylene, C3HN, for

example (which is potentially important in exoplanet atmospheres [346] and

in investigating that of Titan [347]), or propynylidyne, C3H, [348, 349]. It will

be interesting to test the (3N− 6)-approach in particular on chain molecules

with relatively high barriers to linearity, e.g., H2O2 [350, 15] to see if the exact

cusp conditions in Eq. (7.28) will be relevant for the basis set convergence of

the variational results.

It was shown in Chapter 8 that the ro-vibrational energy and intensity

calculations using the (3N− 5) model (including new ab initio potential en-
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ergy and dipole moment surfaces) work in TROVE, with no numerical issues

due to singularities in matrix elements, and that this method can be used,

in combination with other techniques such as empirical PES refinement [369]

(see Section 9.2) or replacement of vibrational band centers (EBSC) [21] (see

Section 9.3), to produce accurate high-temperature ro-vibrational spectra for

12C2H2. This has not been achieved before; previous variational calculations

(such as in Refs. [38], [39], [40], [41], [42], [43]) did not provide coverage up

to the high excitations (vibrational or rotational) that have been achieved in

this work, and only data for low ro-vibrational excitations are presented in the

literature. Previous effective Hamiltonian models for 12C2H2 (e.g. Refs. [46] or

[44]) have provided a good fit to experimental data obtained at largely room

temperature, but would not be expected to extrapolate so accurately up to

high temperatures and thus do not offer the coverage that variational calcu-

lations do. New ab initio potential energy and dipole moment surfaces were

also computed and presented in Chapter 8. In particular, the 3N− 6 poten-

tial energy surface of Section 8.2.3 (available from the Supplementary Data of

Chubb et al. [24]) is general and highly accurate and should therefore be of

use to the spectroscopic community.

The ab initio spectrum of 12C2H2 presented in Chapter 8 is not currently

accurate enough for practical spectroscopic applications. Experience shows

(see, for example, Ref. [10]) that the quality of the computational model can be

substantially improved by fitting the PES of a molecule to the experimental en-

ergies, which results in an effective PES which is thus only applicable with the

computational model used in the fit in order to guarantee high quality calcula-

tions. The ab initio PES of 12C2H2 presented in this thesis is currently being

refined to the extensive set of experimentally determined energies of Chapter 5,

which were analysed using the MARVEL procedure. This is expected to lead

to a significant improvement in accuracy not only for the energies, but also, as

preliminary results show, for intensities. This refinement procedure and related

calculations are in progress in computing the high-accuracy aCeTY linelist, the
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details of which are presented in Chapter 9. This linelist is expected to be valid

up to temperatures of around 1000–1200 K. This is being calculated as part

of the ExoMol project [8, 9] and will be appropriate for use in modelling hot

exoplanet or cool stellar atmospheres. The band centres which are computed

as part of the variational calculations are to be replaced with empirical values,

which acts to shift all associated rotational levels towards their experimental

value. The final improvement is to replace the theoretical energies in a linelist

with the empirical MARVEL energies, where available. This leads to a linelist

of experimental quality but with a much larger coverage. This should ideally

mean that the linelist will be suitable for use in high-resolution Doppler spec-

troscopy applications. Observational studies such as these would help validate

the accuracy of the linelist and offer guidance on which areas may need work

on improving in the future. The linelist will also have the potential to be in-

cluded as part of the HITEMP [93] database, which is the high-temperature

version of HITRAN [165].
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M. Zub, T. Sumi, M. K. Szymański, M. Kubiak, R. Poleski, I. Soszynski,
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Zobov, A. R. Al Derzi, C. Fábri, A. Z. Fazliev, T. Furtenbacher, I. E.

Gordon, L. Lodi, I. I. Mizus, IUPAC critical evaluation of the rotational-

vibrational spectra of water vapor. Part III. Energy levels and transition

wavenumbers for H2
16O, J. Quant. Spectrosc. Radiat. Transf. 117 (2013)

29–80. doi:10.1016/j.jqsrt.2012.10.002.

[223] J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, A. G. Császár,

L. Daumont, R. R. Gamache, J. T. Hodges, O. V. Naumenko, O. L.

Polyansky, L. S. Rothmam, A. C. Vandaele, N. F. Zobov, N. Dénes,
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