6 research outputs found

    A Temporal -omic Study of Propionibacterium freudenreichii CIRM-BIA1T Adaptation Strategies in Conditions Mimicking Cheese Ripening in the Cold

    Get PDF
    Propionibacterium freudenreichii is used as a ripening culture in Swiss cheese manufacture. It grows when cheeses are ripened in a warm room (about 24°C). Cheeses with an acceptable eye formation level are transferred to a cold room (about 4°C), inducing a marked slowdown of propionic fermentation, but P. freudenreichii remains active in the cold. To investigate the P. freudenreichii strategies of adaptation and survival in the cold, we performed the first global gene expression profile for this species. The time-course transcriptomic response of P. freudenreichii CIRM-BIA1T strain was analyzed at five times of incubation, during growth at 30°C then for 9 days at 4°C, under conditions preventing nutrient starvation. Gene expression was also confirmed by RT-qPCR for 28 genes. In addition, proteomic experiments were carried out and the main metabolites were quantified. Microarray analysis revealed that 565 genes (25% of the protein-coding sequences of P. freudenreichii genome) were differentially expressed during transition from 30°C to 4°C (P<0.05 and |fold change|>1). At 4°C, a general slowing down was observed for genes implicated in the cell machinery. On the contrary, P. freudenreichii CIRM-BIA1T strain over-expressed genes involved in lactate, alanine and serine conversion to pyruvate, in gluconeogenesis, and in glycogen synthesis. Interestingly, the expression of different genes involved in the formation of important cheese flavor compounds, remained unchanged at 4°C. This could explain the contribution of P. freudenreichii to cheese ripening even in the cold. In conclusion, P. freudenreichii remains metabolically active at 4°C and induces pathways to maintain its long-term survival

    Mesophilic lactic acid bacteria diversity encountered in brazilian farms producing milk with particular interest in Lactococcus Lactis Strains

    No full text
    The milk produced in regions with different traditions in Brazil is used for artisanal product production, which is characterized by different sensorial characteristics. This study aimed to identify the bacterial ecosystem of farms located in a traditional dairy region in the state of Minas Gerais and to characterize Lactococcus lactis strains, the species of interest in this study, using a multilocus sequence typing (MLST) protocol and pulsed-field gel electrophoresis (PFGE) technique. Samples were collected from raw milk and dairy environment from six farms. A total of 50 isolates were analyzed using 16S rRNA sequencing and species-specific PCR. Five genera were identified: Lactobacillus, Leuconostoc, Lactococcus, Enterococcus, and Staphylococcus, from ten different species. MLST (with six housekeeping genes) and PFGE (with SmaI endonuclease) were used for the characterization of 20 isolates of Lactococcus lactis from a dairy collection in this study. Both methods revealed a high clonal diversity of strains with a higher discriminatory level for PFGE (15 pulsotypes), compared to MLST (12 ST). This study contributes to the preservation of the Brazilian dairy heritage and provides insights into a part of the LAB population found in raw milk and dairy environment

    Structural studies of the cell wall polysaccharides from three strains of Lactobacillus helveticus with different autolytic properties: DPC4571, BROI, and LH1

    No full text
    Lactobacillus helveticus is traditionally used in dairy industry as a starter or an adjunct culture for manufacture of cheese and some types of fermented milk. Its autolysis releases intracellular enzymes which is a prerequisite for optimum cheese maturation, and is known to be strain dependent. Autolysis is caused by an enzymatic hydrolysis of the cell wall peptidoglycan (PG) by endogenous peptidoglycan hydrolases (PGHs) or autolysins. Origins of differences in autolytic properties of different strains are not fully elucidated. Regulation of autolysis possibly depends on the structure of the cell wall components other than PG, particularly polysaccharides. In the present work, we screened six L. helveticus strains with different autolytic properties: DPC4571, BROI and LH1. We established, for the first time, that cell walls (CWs) of these strains contained polysaccharides, different from their CW teichoic acids. Cell wall polysaccharides of three strains were purified, and their chemical structures were established by 2D NMR spectroscopy and methylation analysis. The structures of their repeating units are presented. \ua9 2013 Elsevier Ltd.Peer reviewed: YesNRC publication: Ye
    corecore