92 research outputs found

    The Paths to Specific vs Nonspecific Sequence Recognition

    Get PDF

    Comparative analysis of metabolome of rice seeds at three developmental stages using a recombinant inbred line population.

    Get PDF
    Plants are considered an important food and nutrition source for humans. Despite advances in plant seed metabolomics, knowledge about the genetic and molecular bases of rice seed metabolomes at different developmental stages is still limited. Here, using Zhenshan 97 (ZS97) and Minghui 63 (MH63), we performed a widely targeted metabolic profiling in seeds during grain filling, mature seeds and germinating seeds. The diversity between MH63 and ZS97 was characterized in terms of the content of metabolites and the metabolic shifting across developmental stages. Taking advantage of the ultra-high-density genetic map of a population of 210 recombinant inbred lines (RILs) derived from a cross between ZS97 and MH63, we identified 4681 putative metabolic quantitative trait loci (mQTLs) in seeds across the three stages. Further analysis of the mQTLs for the codetected metabolites across the three stages revealed that the genetic regulation of metabolite accumulation was closely related to developmental stage. Using in silico analyses, we characterized 35 candidate genes responsible for 30 structurally identified or annotated compounds, among which LOC_Os07g04970 and LOC_Os06g03990 were identified to be responsible for feruloylserotonin and l-asparagine content variation across populations, respectively. Metabolite-agronomic trait association and colocation between mQTLs and phenotypic quantitative trait loci (pQTLs) revealed the complexity of the metabolite-agronomic trait relationship and the corresponding genetic basis

    Driving risk assessment and prevention strategies for autonomous vehicle in open-pits

    Get PDF
    Driving risk assessment and protection is the critical technology of unmanned transportation systems in open-pits. In order to warrant the safe operation of unmanned vehicles in open-pits, the Driving Security Model (DSM) based on the vehicle-road-cloud transportation system is established. Based on the multi-source information from the vehicle, roadside, and cloud platform, the DSM can assess the driving risk level of driverless vehicles and provide corresponding driving risk prevention strategies. The DSM comprises driving state awareness, driving risk assessment, and driving risk protection. In terms of driving risk assessment, the threshold of pre-collision time is corrected through the road slope ahead of the vehicle, and the minimum braking safety distance is modified by the information of road slope and vehicle load state. In the meantime, a comprehensive driving risk assessment strategy is proposed, which can quantify the real-time collision risk of autonomous vehicles in open-pits. Then, a collision risk protection system that considers different driving risks is then designed based on a finite state machine. A smooth braking control strategy is developed to meet the minimum safety distance. Finally, a digital twin simulation system that corresponds to the autonomous vehicle in an open-pit is built based on the PreScan and Matlab co-simulation technology and some simulation tests in the horizontal, uphill-downhill road and full load scenes are carried out. The simulation results show that the DSM’s comprehensive risk assessment strategy can evaluate suitable risk levels in advance and timely brake, which indicates that the introduction of road slope information can improve the driving safety of the vehicle up and downhill scenes. By introducing vehicle load information, the designed minimum safe braking distance index can detect potential collision risk in time. The DSM’s emergency braking control strategy can smoothly stop the vehicle before 10 m safe distance, which improves the stability of heavy-duty vehicles during emergency braking

    Evidence for Pseudogap Phase in Cerium Superhydrides: CeH10_{10} and CeH9_9

    Full text link
    Polyhydride superconductors have been shown to possess metallic properties with a Bardeen-Cooper-Schrieffer-type superconducting ground state. Here, we provide evidence for unconventional transport associated with a pseudogap phase in cubic cerium superhydride CeH10_{10} (T\textit{T}C_C = 116 K) at pressure of 115-125 GPa. A large negative magnetoresistance in the non-superconducting state below 90 K, quasi T\textit{T}-linear electrical resistance, and a sign-change of its temperature dependence mark the emergence of this phase. We studied the magnetic phase diagrams and the upper critical fields B\textit{B}C2_{C2}(T) of CeH10_{10}, CeH9_9, and CeD9_9 in pulsed fields up to 70 T. B\textit{B}C2_{C2}(T) of CeH9_9 and CeD9_9 exhibits pronounced saturation at low temperatures in accordance with the Werthamer-Helfand-Hohenberg model, whereas CeH10_{10} stands out in particular, as it does not obey this model. Our observations, therefore, reveal the unconventional nature of non-superconducting state of cerium superhydride CeH10_{10}

    Ising Superconductivity and Quantum Phase Transition in Macro-Size Monolayer NbSe2

    Full text link
    Two-dimensional (2D) transition metal dichalcogenides (TMDs) have a range of unique physics properties and could be used in the development of electronics, photonics, spintronics and quantum computing devices. The mechanical exfoliation technique of micro-size TMD flakes has attracted particular interest due to its simplicity and cost effectiveness. However, for most applications, large area and high quality films are preferred. Furthermore, when the thickness of crystalline films is down to the 2D limit (monolayer), exotic properties can be expected due to the quantum confinement and symmetry breaking. In this paper, we have successfully prepared macro-size atomically flat monolayer NbSe2 films on bilayer graphene terminated surface of 6H-SiC(0001) substrates by molecular beam epitaxy (MBE) method. The films exhibit an onset superconducting critical transition temperature above 6 K, 2 times higher than that of mechanical exfoliated NbSe2 flakes. Simultaneously, the transport measurements at high magnetic fields reveal that the parallel characteristic field Bc// is at least 4.5 times higher than the paramagnetic limiting field, consistent with Zeeman-protected Ising superconductivity mechanism. Besides, by ultralow temperature electrical transport measurements, the monolayer NbSe2 film shows the signature of quantum Griffiths singularity when approaching the zero-temperature quantum critical point
    • …
    corecore