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SUMMARY

Plants are considered an important food and nutrition source for humans. Despite advances in plant seed

metabolomics, knowledge about the genetic and molecular bases of rice seed metabolomes at different

developmental stages is still limited. Here, using Zhenshan 97 (ZS97) and Minghui 63 (MH63), we performed

a widely targeted metabolic profiling in seeds during grain filling, mature seeds and germinating seeds. The

diversity between MH63 and ZS97 was characterized in terms of the content of metabolites and the meta-

bolic shifting across developmental stages. Taking advantage of the ultra-high-density genetic map of a

population of 210 recombinant inbred lines (RILs) derived from a cross between ZS97 and MH63, we identi-

fied 4681 putative metabolic quantitative trait loci (mQTLs) in seeds across the three stages. Further analysis

of the mQTLs for the codetected metabolites across the three stages revealed that the genetic regulation of

metabolite accumulation was closely related to developmental stage. Using in silico analyses, we character-

ized 35 candidate genes responsible for 30 structurally identified or annotated compounds, among which

LOC_Os07g04970 and LOC_Os06g03990 were identified to be responsible for feruloylserotonin and L-as-

paragine content variation across populations, respectively. Metabolite�agronomic trait association and

colocation between mQTLs and phenotypic quantitative trait loci (pQTLs) revealed the complexity of the

metabolite�agronomic trait relationship and the corresponding genetic basis.

Keywords: rice seeds, metabolome, seeds during grain filling, mature seeds, germinating seeds, metabolic

quantitative trait loci.

INTRODUCTION

As readouts of the physiological or biochemical status of

an organism, metabolites are essential for plant growth

and plant�environment interactions, as well as for human

health (Keurentjes, 2009; Saito and Matsuda, 2010; De Luca

et al., 2012; Wurtzel and Kutchan, 2016). Benefiting from

the extreme diversity of metabolites, plants have become

ideal models for dissecting the mechanism of metabolite

biosynthesis and its regulation (Keurentjes et al., 2006;

Morohashi et al., 2012; Luo, 2015; Fang et al., 2019a,b;

Fang and Luo, 2019). In plants, which are sessile in nature,

the number of metabolites is estimated to be between

100 000 and 1 million (Dixon and Strack, 2003; Afendi

et al., 2012). Many metabolites display differential shifts

during development. For instance, the contents of the

majority of C-glycosylated and O-glycosylated flavonoids

significantly increase in seedlings during the first 10 days

after germination, which decrease slightly during later

stages (Dong et al., 2014). Furthermore, the accumulation

of anthocyanins and most of the indole-derived glucosino-

lates in leaves largely increases continuously throughout

leaf senescence (Watanabe et al., 2013). Development-de-

pendent accumulation is also observed concerning the

content of primary metabolites (Mounet et al., 2007; Hu

et al., 2016; Silva et al., 2017). For instance, Hu et al. (2016)
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found that more than half of the detected amino acids and

their derivatives accumulated at a significantly decreased

level in rice grains at 28 days after flowering (DAF) com-

pared with 14 DAF. However, knowledge about the diver-

sity of plant metabolites in the same tissue at different

stages of development is still largely scarce.

The diversity of plant metabolism across species and

within natural accessions of a single species has been well

documented (Borevitz et al., 2007; Biais et al., 2010). As

one of the most essential crop species, rice (Oryza sativa

L.) not only provides one-half of the world’s population

more than 20% of its caloric intake but also serves as a

nutrition source (Fitzgerald et al., 2009; Hu et al., 2014;

Zhang et al., 2016; Chen et al., 2018). Indica and japonica

are two subspecies of Asian cultivated rice (Ouyang and

Zhang, 2013; Zhang et al., 2016). A significant difference

between indica and japonica occurs not only in the gen-

ome structure and gene content (Ouyang and Zhang, 2013;

Zhang et al., 2016) but also in the metabolite accumulation

pattern (Chen et al., 2014; Dong et al., 2014; Hu et al.,

2014; Dong et al., 2015; Fang et al., 2016; Peng et al.,

2016). For instance, in our previous study in rice grains, a

majority of the metabolites whose levels were substantially

higher in the indica accessions were found to be C-glyco-

sylated and malonylated flavonoids, whereas the japonica

cultivars exhibited preferential accumulation of most

amino acids, nucleic acids, and their derivatives (Chen

et al., 2016). Furthermore, Hu et al. (2014) identified a sig-

nificant difference in the abundance of metabolites and in

the metabolite�metabolite association networks between

mature seeds of indica and japonica. Genomic studies

revealed that indica rice is genetically much more diverse

than is japonica rice (Huang et al., 2010), indicating meta-

bolic diversity across indica accessions. A population of

RILs was derived from Zhenshan 97 (ZS97, indica I) and

Minghui 63 (MH63, indica II), parents of the most widely

cultivated elite hybrid in China (Zhang et al., 2016). Previ-

ously, we performed a metabolic quantitative trait loci

(mQTLs) analysis in rice grain and flag leaves (Gong et al.,

2013). In addition, using a data matrix of metabolites,

including 683 in flag leaves and 317 in germinating seeds,

we characterized the metabolic diversity between MH63

and ZS97 (Gong et al., 2013).

Exploring the genetic basis underlying the metabolic

diversity in plants with linkage and/or association mapping

is of high interest (Matsuda et al., 2012; Hu et al., 2014;

Kusano et al., 2015; Hu et al., 2016). Many efforts have

been made to identify the genetic determinants of the

metabolic variation in rice grains among different varieties.

mQTL analysis is a powerful strategy for the dissection of

the genetic regulation of metabolites. For example, approx-

imately 800 mQTLs for more than 700 metabolite-related

traits were identified with backcrossed inbred lines of

Sasanishiki (japonica) and Hatabaki (indica) (Matsuda

et al., 2012). To decode the genetic regulation of the

biosynthesis of the nonprotein amino acid, b-tyrosine, RILs
were derived from Nipponbare and IR64, which produce

and do not produce b-tyrosine, respectively (Yan et al.,

2015). Subsequent genetic mapping identified the causal

gene that encodes a tyrosine aminomutase, whose func-

tion in affecting b-tyrosine accumulation was further con-

firmed in vitro and in vivo (Yan et al., 2015). Our previous

work also identified the complex genetic regulation under-

lying the metabolic diversity in flag leaves and/or germi-

nating seeds of MH63 and ZS97. More than 1800 mQTLs

for 683 metabolites and more than 800 mQTLs for 317

metabolites were identified in flag leaves and germinated

seeds, respectively. In total, 509 mQTLs for 100 codetected

metabolites were identified in both tissues, of which 463

mQTLs were distinct; moreover, 23 mQTLs for 19 metabo-

lites were detected simultaneously in both tissues (Gong

et al., 2013). Although encouraging discoveries have been

obtained for metabolic variation and corresponding

genetic bases, knowledge of the diversity of plant metabo-

lites in the same tissue at different developmental stages

and of its genetic basis are limited.

In this study, we characterized the metabolic shift in rice

seeds at different developmental stages, including seeds

during grain filling, mature seeds and germinating seeds.

Furthermore, we aimed to decipher the difference and the

genetic determinants in grain metabolic dynamics across

developmental stages between MH63 and ZS97. Therefore,

a population of 210 RILs derived from a cross between

ZS97 and MH63 was utilized for metabolic quantitative trait

loci (mQTLs) analysis. By combining the results of mQTL

analyses and in silico analyses, we characterized 35 candi-

date genes for 30 known compounds, among which the

genes controlling the biosynthesis of feruloylserotonin and

the content L-asparagine were further validated by trans-

genic assays. In addition, a metabolite�agronomic trait

network was established using the correlation between

metabolites in the seeds at three stages and agronomic

traits, and mQTL analyses and pQTL analyses were com-

bined to reveal the genetic basis underlying the complex

traits consisting of metabolites and agronomics, which

provide profound insights into crop improvements.

RESULTS

Metabolic profiling analyses of rice grains at different

developmental stages

To obtain a global view of the metabolic variation in rice

grains of indica cultivars at different developmental stages,

metabolic profiling analyses were performed with germi-

nating seeds and mature seeds from 96 and 108 accessions

(Table S1), respectively. When the chromatographic and

fragmental behaviors were compared directly with those of

the commercial standards or were decoded with described

© 2019 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,
The Plant Journal, (2019), 100, 908–922

Comparative analysis of rice seeds metabolome 909



previously strategies (Chen et al., 2013), 167 metabolites in

germinating seeds and 296 in mature seeds were struc-

turally identified or annotated (Table S2). To visualize the

accumulation pattern of these metabolites in the seeds of

indica cultivars, hierarchical clustering analyses were con-

ducted. As shown in Figures S1 and S2, significant varia-

tion in the content of metabolites in germinating and

mature seeds was observed within the indica accessions.

As the parents of the most widely cultivated hybrid rice in

China, MH63 and ZS97 were separated into two distinct

clusters according to metabolome data of the germinating

and mature seeds.

To further identify the diversity in metabolite content

and metabolic shifting between the seeds of MH63 and

ZS97 at different developmental stages, widely targeted

metabolic profiling was performed with seeds during grain

filling, mature seeds and germinating seeds. An MS2 spec-

tral tag (MS2T) library was constructed as previously

described (Matsuda et al., 2009; Chen et al., 2013).

Although 317 metabolites were detected in germinating

seeds in our previous study (Gong et al., 2013), we profiled

836 metabolites in germinating seeds by optimizing the

method. Combined with 855 compounds in seeds during

grain filling and 810 compounds in mature seeds, a data

matrix was obtained that included a total of 2501 metabo-

lites, with 372 metabolites detected in common (Figure 1a).

Among these compounds, 233 metabolites were struc-

turally identified or annotated and classified as amino

acids, anthocyanins, fatty acids, flavonoids, polyamines or

vitamins (Chen et al., 2016). Scheduled multiple reaction

monitoring (MRM), a high-throughput strategy (Chen et al.,

2013) was performed to quantify the metabolites. Principle

component analysis (PCA) revealed that 42.4% and 28.9%

of the variability were explained by components 1 and 2,

respectively (Figure 1b). As shown in the PCA score plots,

the separation among rice grains at different stages from

the same cultivar was much wider than that among those

of different cultivars at the same stage, indicating that the

metabolic variation across developmental stages was

much more significant than that between two different

genotypes. The developmental stage-dependent accumula-

tion pattern was further supported visually by a heatmap

based on the metabolome data of MH63 and ZS97 at the

three stages. As shown in Figure 1(c) and Table S5, in con-

trast to those at other stages, rice seeds at each stage accu-

mulate different compounds at high levels. For example,

the content of a series of flavonoids and amino acids in

germinating seeds is significantly higher than that in

mature seeds or seeds during grain filling. Moreover, com-

pounds in the same class displayed different accumulation

patterns. For instance, compared with the seeds at the

other stages, mature seeds displayed a higher content of

adenosine, although most nucleic acid derivatives tend to

accumulate at a high level in seeds during grain filling and

in germinating seeds. Although the accumulation pattern

of the codetected metabolites across the three stages in

MH63 resembled that in ZS97, several compounds dis-

played different metabolic shifts (Figure 1c). For instance,

the content of a tricin O-hexoside derivative (m0800)

decreased to varying degrees in the mature seeds and ger-

minating seeds compared with the seeds during grain fill-

ing of the MH63 cultivar. Although the content of m0800

was significantly lower in the seeds of ZS97 at each stage

than in the seeds of MH63, the accumulation pattern of the

same compound across the three stages in ZS97 was

opposite that in MH63 (Figure S3), suggesting a complex

regulatory network of the corresponding metabolite.

To explore the genetic determinants underlying the

metabolic variation between MH63 and ZS97, a population

of 210 RILs were used for further study. Samples of rice

seeds were collected at three different developmental

stages, including seeds during grain filling, mature seeds

and germinating seeds. The metabolite content varied sub-

stantially among the RILs, with average coefficients of vari-

ation (CVs) of 60.91%, 71.44% and 60.71% in seeds during

grain filling, mature seeds and germinating seeds, respec-

tively (Figure 2a and Table S3). Nearly half of the metabo-

lites have relatively high CVs (CV > 50%) at the three

stages, especially for secondary metabolites, including

anthocyanins, flavonoids, and terpenes (Table S4).

For the purpose of visualizing the metabolic variation

across the RILs, hierarchical clustering analysis was con-

ducted with the metabolome data from the aforemen-

tioned stages (Figure 2b). Dramatic metabolic variation

was observed in the RILs both within and across stages.

Several metabolites were found to accumulate preferen-

tially in the seeds at certain stages. For instance, amino

acids such as L-arginine, L-asparagine, L-histidine, L-serine

and L-threonine accumulated at relatively high levels

specifically in germinating seeds (Figure 2c). Moreover, we

also observed a dynamic shifting in metabolites across

seeds during grain filling, mature seeds and germinating

seeds, indicating a continuous metabolic progress across

the three stages. For example, increasing cytidine contents

in the three stages was observed, while adenosine dis-

played the opposite trend (Figure 2d).

mQTL identification for rice seed metabolic variation

Benefiting from an ultra-high-density map consisting of

1619 bins generated by population sequencing (Yu et al.,

2011), mQTL mapping yielded 1600, 1506 and 1575 mQTLs

with logarithm of odds (LOD) scores >3.0 in seeds during

grain filling, mature seeds and germinating seeds, respec-

tively; in addition, 86.0% (735/855), 79.1% (641/810) and

82.7% (691/836) of the detected metabolites had at least

one mQTL, respectively. The number of mQTLs for each

metabolite varied from one to seven, with 93, 109 and 119

metabolites having more than four mQTLs in seeds during

© 2019 The Authors.
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grain filling, mature seeds and germinating seeds, respec-

tively (Table S6). Among the 1506 mQTLs detected in

mature seeds, 1415, 70 and 21 loci are responsible for

<20%, 20–50% and more than half of the variation in the cor-

responding compounds, respectively. In addition, 1460 and

1488 loci accounted for <20% of the variation in metabolites

in germinating seeds and in seeds during grain filling,

respectively (Figure 3a). Nevertheless, 26 and 39 mQTLs

had effects greater than 50% in germinating seeds and

seeds during grain filling, respectively. In total, 112, 91 and

115 mQTLs with effects greater than 20% were obtained in

the seeds during grain filling, mature seeds and germinat-

ing seeds, respectively (Figure 3a and Table S6).

We found that the mQTLs displayed a significant devia-

tion from random distribution across the whole genome in

the seeds during grain filling (v2 = 292.11, P < 2.2e-16),

mature seeds (v2 = 508.30, P < 2.2e-16) and germinating

seeds (v2 = 912.66, P < 2.2e-16) of both cultivars (Table S8).

The intervals enriching mQTLs may contain major genes

for accumulation of a large number of compounds. Totally,

41, 42, and 35 potential mQTL ‘hot spots’ were character-

ized in seeds during grain filling, mature seeds, and germi-

nating seeds, respectively. The mQTL hot spots in the

mature seeds and germinating seeds were located mainly

on chromosomes 5 and 6 and on all chromosomes except

chromosome 3 in seeds during grain filling (Figure 3b).

When the mQTLs of individual metabolites were com-

pared, we detected 1,804 distinct loci among the total 2068

loci detected for the 372 codetected metabolites in the

seeds at three different stages (Table S7), suggesting that

the majority of metabolites across the three stages may be

under different genetic control. Further mQTL analysis

revealed different types of genetic control of metabolism.

Although 372 metabolites were detected in the seeds at all
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Figure 1. Metabolic variation in rice grains between MH63 and ZS97 across different developmental stages. (a) Venn diagram of the number of metabolites

detected in seeds during grain filling (orange), in mature seeds (red) and in germinating seeds (blue). (b) Principle component analysis (PCA) of the metabolite

profiling of seeds during grain filling (triangle), of mature seeds (asterisk) and of germinating seeds (plus). Three biological replications were used for metabo-

lite profiling. The letters ‘e’, ‘s’ and ‘g’ represent seeds during grain filling, mature seeds and germinating seeds, respectively. (c) Heatmap based on the metabo-

lome data of MH63 and ZS97 rice seeds at three stages. Three biological replications were used for metabolite profiling. The metabolite profiles were analyzed

for seeds during grain filling, for mature seeds and for germinating seeds. The content value of each metabolite was normalized, and hierarchical clustering was

performed. The red color indicates a high abundance of a metabolite, whereas the blue color represents a low relative abundance of a metabolite. Each rice vari-

ety is visualized in a single row, and each metabolite is represented by a single column. The bottom annotation with different colors represents a different class

to which the corresponding metabolite belongs. FS, seeds during grain filling; MS, mature seeds; GS, germinating seeds.
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three stages, 70 mQTLs for 46 metabolites were detected

at a specific stage, including 27, 24 and 19 mQTLs for 16,

14 and 16 metabolites in seeds during grain filling, mature

seeds and germinating seeds, respectively. Although

mQTLs for 102 codetected metabolites were detected in

the seeds at two distinct stages, only approximately 18%

of those individual metabolites shared overlapping mQTL

segments at two stages, mostly (14 metabolites) in mature

seeds and germinating seeds. Moreover, mQTLs for 218

codetected metabolites were identified in rice grains at all

three stages (Table S7). Further data mining revealed that

60 mQTLs for 48 metabolites shared overlapping segments

across three stages, such as a major mQTL on chromo-

some 11 for the content of m2148. Overlapping mQTLs for

individual compounds across different stages suggested

that the genetic regulation of metabolite biosynthesis is

conserved at various developmental stages. Although more

than half of these metabolites have one or more mQTL(s)

sharing overlapping segments in at least two stages, 96

metabolites have distinct mQTLs across three tissues. For

example, the most significant mQTL across the three stages

for luteolin 6-C-glucoside (m0476) was mapped to a 3.6 Mb

region on chromosome 8 with LOD score of 5.84 in mature

seeds. Although mQTLs overlapping with this major mQTL
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Figure 2. Metabolic variation in rice grains at different developmental stages across 210 RILs. (a) Distribution of the coefficient of variation (CV) across three

stages. MS, mature seeds; GS, germinating seeds; FS, seeds during grain filling. (b) Heatmap based on metabolome data of rice seeds at three stages across

210 RILs. Two biological replications were used for metabolite profiling. The metabolite profiles were analyzed for seeds during grain filling, for mature seeds

and for germinating seeds. The content value of each metabolite was normalized, and hierarchical clustering was performed. The red color indicates a high

abundance of a metabolite, whereas the blue color represents a low relative abundance of a metabolite. Each rice variety is visualized in a single row, and each

metabolite is represented by a single column. The bottom annotation with different colors represents a different class to which the corresponding metabolite

belongs. The developmental stage is represented by the color of the bar on the right side. MS, mature seeds; GS, germinating seeds; FS, seeds during grain fill-

ing. (c) Box plot of the relative content of amino acids that accumulated at relatively high levels specifically in germinating seeds. (d) Different dynamic shifting
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were not found at the other two stages, mQTLs for the same

metabolite were mapped to 1 and 1.8 Mb regions on chro-

mosome 11 and chromosome 6 in germinating seeds and

seeds during grain filling, with LOD scores of 4.63 and 5.67,

respectively (Figure 3c and Table S7). This finding sug-

gested a development-dependent manner of metabolite

biosynthesis control.

In silico analysis of candidate genes of mQTLs

To identify candidate genes underlying the metabolic varia-

tion in the seeds of MH63 and ZS97, in silico analyses with

genomic, transcriptomic and metabolomic data were car-

ried out. To determine the common genetic regulators in

the seeds at different stages for each individual metabolite,

we focused on those mQTLs with overlapping segments

across different stages. For instance, the feruloylserotonin

content in MH63 was at least twice as high as that in ZS97

across all three stages (Figure S4b). mQTLs for feruloylsero-

tonin across the three stages shared a 0.34 Mb segment on

chromosome 7 and had relatively high LOD values (LOD

values = 15.2, 17.1 and 23.9 in seeds during grain filling,

mature seeds and germinating seeds, respectively; Fig-

ure S4a and Table S7). Based on our prior knowledge about

metabolomics and metabolic pathways, we characterized

plausible genes, including genes encoding glycosyltrans-

ferase, methyltransferase, acetyltransferase and so on

(Peng et al., 2016, 2017). A putative acetyltransferase gene,

LOC_Os07g04970, was identified; the product of this gene

may catalyze acylation with two different substrates: feru-

loyl-CoA and serotonin moieties. The expression of

LOC_Os07g04970 in seed tissues during grain filling, endo-

sperm, was higher than that in germinating seeds in both

MH63 and ZS97 (Figure S6a), which is consistent with the

metabolic shift of feruloylserotonin (Figure S4b). Genome

sequence analysis revealed several variants in the coding

region of LOC_Os07g04970 between MH63 and ZS97,

resulting in the alternation of three amino acid residues

(Figure S4b). However, the alternated amino acids are not

in the conserved regions of the protein (Figure S5). More-

over, a 36-bp deletion was found in the promoter region in

ZS97. In the radicle at 48 h after emergence under darkness,

compared with that in MH63, the expression level of

LOC_Os07g04970 in ZS97 increased by approximately 14-

fold (Figure S4c). Hence, LOC_Os07g04970 was a candidate

gene for the control of the biosynthesis of feruloylsero-

tonin, whose genetic variants in the promoter and coding

region might cooperatively affect its content variation.

As mentioned above, nearly 100 individual metabolites,

including L-asparagine, have distinct mQTLs across three

tissues. The most significant mQTL across the three stages

for L-asparagine was mapped to a 0.79 Mb interval on chro-

mosome 6, which displayed the highest LOD score of 12.6

in germinating seeds. Although mQTLs overlapping with

this major mQTL were not found at the other two stages,

mQTLs for the same metabolite were mapped to 0.86 and

1.41 Mb regions on chromosome 6 and chromosome 9 in

mature seeds and seeds during grain filling with LOD

scores of 8.3 and 4.3, respectively (Figure 4a). Although a

plausible enzymatic gene underlying major QTLs in mature

seeds and seeds during grain filling was not found, data
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mining led to the identification of LOC_Os06g03990 as a

candidate genetic determinant affecting the content of L-as-

paragine in germinating seeds. As an aminotransferase,

LOC_Os06g03990 may participate in the transfer of an

amino group from L-asparagine to an alpha-keto acid. The

expression of LOC_Os06g03990 in seed tissues during grain

filling was higher than that in germinating seeds (Fig-

ure S6b), while the germinating seeds displayed higher

content of L-asparagine (Figure 2c), suggesting a repressor

role of LOC_Os06g03990 in L-asparagine accumulation.

Sequence alignment revealed the alternation of four amino

acid residuals between MH63 and ZS97, including one in

the aminotransferase class I and II domain conserved

region (Figure 4b and Figure S7). There was no significant

variation in the expression of LOC_Os06g03990 across the

whole life cycle between MH63 and ZS97 (Figure S6b).

Hence, different contents of L-asparagine between MH63

and ZS97 might be the result of protein sequence variation

of LOC_Os06g03990.

Global in silico analyses of the genetic determinants of

all detected metabolites were carried out with the above-

mentioned approach. In total, we characterized 35 candi-

date genes responsible for 30 structurally identified or

annotated compounds (Table 1).

Validation of candidate genes with introgression and

transgenic lines

To validate the candidate genes for metabolic variation,

the contents of compounds in different haplotypes were

analyzed in RILs. For example, we analyzed the feru-

loylserotonin content in 106 and 97 lines from the RILs car-

rying LOC_Os07g04970 of the MH63 and ZS97 haplotypes,

respectively. Feruloylserotonin accumulated in MH63 hap-

lotype lines at an average level that was 2.5-fold that in the

ZS97 haplotype lines across the aforementioned stages

(Figure S4b). The feruloylserotonin content and genotype

association analysis suggested that LOC_Os07g04970 was

responsible for the feruloylserotonin content variation

across artificial populations. Candidate genes underlying

variation in the content of primary metabolites were also

validated with RILs. For instance, a 20% decrease in L-as-

paragine was observed in lines carrying LOC_Os06g03990

of the MH63 haplotype compared with lines with the ZS97

haplotype (Figure 4b), which preliminarily confirmed the

role of LOC_Os06g03990 in the genetic determination of

the metabolic variation in L-asparagine.

Although the experimental validation of all candidate

genes’ role in controlling metabolite accumulation is

beyond the scope of a single study, we tested the in vivo

functions of one candidate gene in the accumulation of the

corresponding compounds. To confirm the in vivo function

of LOC_Os06g03990, a candidate gene for the content of L-

asparagine, overexpression lines were generated by intro-

ducing this gene driven by a constitutive promoter into the

Zhonghua 11 (ZH11) background. Expression analysis vali-

dated the overexpression of this gene in T3 lines (Fig-

ure 4c). Considering that LOC_Os06g03990 was

responsible for L-asparagine content variation only in ger-

minating seeds, metabolic analysis was performed with

rice grains at 72 h after germination. The content of L-as-

paragine in the transgenic lines was found to be less than

half of the content in wild-type plants (Figure 4d), validat-

ing the repressor role of LOC_Os06g03990 in L-asparagine

accumulation. Moreover, overexpressing LOC_Os06g03990

also resulted in significantly increased contents of Ile, Phe,

Pro, Trp, Lue, Val, His, and tyramine. Moreover, a series of

amino acids, such as Gly, Arg, tyrosine, Asp and Cys, dis-

played declined accumulation levels in the transgenic lines

(Figure 4e). This result indicated that LOC_Os06g03990

exerts global effects on amino acid biosynthesis.

Metabolite�metabolite network and relationships

between metabolites and agronomic traits

To evaluate the coregulation of groups of metabolites

affected by genetic variation, a series of correlation analy-

ses were conducted using the metabolite profiles of the

RIL population at the three aforementioned stages. Signifi-

cant pairwise correlations (|r| ≥ 0.5 and P < 0.01) between

m-traits identified from each tissue were calculated. There

were 5544, 3481, and 5286 significant correlations between

metabolites detected in seeds during grain filling, in

mature seeds, and in germinating seeds, respectively. To

visualize the most significant correlation between the

majority of structurally identified or annotated metabolites,

an association network was constructed using correlation

data with r ≥ 0.7 or r ≤ �0.5 (P < 0.01), encompassing

metabolites from amino acids, nucleic acids, fatty acids,

flavonoids, anthocyanins, polyamines, polyphenols, and

terpenes (Table S9). Compounds of the same chemical

class or those involved in the same biochemical pathway

tended to display tight correlations with each other. Differ-

ent stages exhibited distinct correlation networks in gen-

eral. For instance, despite the high correlation value of

tricin 40-O-(syringyl alcohol) ether O-hexoside (m0821) and

tricin 40-O-(syringyl alcohol) ether O-hexoside (m0823) in

seeds during grain filling, their correlation values were

lower than 0.5 at the other two stages. Although the corre-

lation values of the same metabolite pairs at different

stages varied substantially, conserved correlations across

stages were also found. For example, 2-amino-1,3,4,

5-eicosanetetrol (m0344) and 4-hydroxysphinganine

(m1494) displayed a strong correlation across the three

aforementioned stages, with r > 0.95 (Figure 5a–c and

Table S9). Moreover, we also identified some conserved

correlations and subnetworks across different stages. For

instance, strong conserved correlations across stages were

observed between each pair of tricalysiamide B (m0284),

kolavic acid (m0295), and momilactone A (m1481) and

© 2019 The Authors.
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each pair of phytocassane E (m1492), gibberellin A53

(m1635), m0363, m1428, m1474, and m1480 (Figure 5a–c
and Table S9).

Variation in metabolite levels constitutes one of the

major causes of variations in trait manifestation (Prakash,

2011; Saito, 2013; Chen et al., 2016). It is highly likely that

many of the mQTLs would be the causes of phenotypic

change. First, we assessed the correlations between the

metabolite levels from each stage and seven agronomic

traits, including heading date (HD), grain length (GL), grain

width (GW), kilo-grain weight (KGW), grain number per

panicle (GN), tillers per plant (TP) and yield per plant (YD).

A metabolite-agronomic network was built in which corre-

lations were significant (|r| > 0.2, P < 0.01). In total, 233 sig-

nificant correlations between 147 compounds and seven

agronomic traits were identified, ranging from �0.63 to

0.68 (Table S10). For each agronomic trait, the number of

metabolites that participated in the model ranged from 1

(GN) to 130 (HD), with an average of 29.3. Moreover, for

each metabolite, the number of tightly correlated
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Figure 4. Validation of the role LOC_Os06g39990

played in asparagine and amino acid accumulation.

(a) QTLs mapped for L-asparagine (Asn) across

three stages. The vertical gray lines indicate the

separation of chromosomes. The horizontal dotted

line indicates the threshold logarithm of odds (LOD)

value. FS, seeds during grain filling; MS, mature

seeds; GS, germinating seeds. (b) Sequence varia-

tion of LOC_Os06g39990 and metabolic variation in

Asn in germinating seeds across the RIL popula-

tion. The turquoise color indicates that the frag-

ment comes from ZS97, while the fragment from

MH63 is cyan. Two biological replications were

used for metabolite profiling. The average content

of each metabolite was calculated to construct the

box plot. The middle line of the box plots indicates

the median, the box indicates the range of the 10th

to 90th percentiles of the total data, and the outer

dots are outliers. DW, dry weight. (c) The expres-

sion level of LOC_Os06g39990 in its T3 overexpres-

sion lines (OX-1, OX-2 and OX-3) and wild-type

(WT) plants. RNA samples were collected from the

second upper leaf of 1-month-old plants. (d) The

content of Asn in germinating seeds of transgenic

(OX-1, OX-2 and OX-3) and WT plants. DW, dry

weight. (e) Overexpressing LOC_Os06g39990

resulted in altered accumulation levels of most

amino acids in the germinating seeds of transgenic

(OX-1, OX-2 and OX-3) and WT plants. FC, fold

change. In (b) and (d), the asterisks indicate the

levels of statistical significance as determined by

Student’s t-test: **P < 0.01. In (d) and (e), three bio-

logical replications were used for metabolite profil-

ing. The average content of each metabolite was

calculated to construct the plots.
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agronomic traits ranged from 1 to 3, with an average of

1.39. These results may suggest the complexity of the rela-

tionships between different agronomic traits and these

metabolites. Most of the metabolite�agronomic trait corre-

lations differed across the three stages, indicating that

developmental status exerts effects on the correlations

between metabolite�agronomic traits. For instance, 37, 92

and 25 compounds from seeds during grain filling, mature

seeds and germinating seeds were found to be signifi-

cantly correlated with HD. However, in some cases, the

same metabolites detected at different stages were in the

same model for a single agronomic trait. For instance,

m0246, m1481 and m1600 detected at all three stages

appeared in the model for HD, suggesting tighter coregula-

tion of HD and these compounds. In addition, some com-

pounds were found to tightly correlated with multiple

agronomic traits, for instance, m1931 participated in the

model for four agronomic traits: HD, GL, GW and KGW

(Figure 5d and Table S10). In the attempt to decipher the

genetic and molecular bases for the variation in complex

traits and correlated metabolites, we analyzed the colocal-

ization between the mQTLs and phenotypic QTLs (pQTLs)

for tightly correlated compounds and agronomic traits. For

example, three QTLs for HD distributed on chromosomes

6, 7 and 11 were shared with mQTLs for at least one

metabolite across the three stages, especially with mQTLs

Table 1 Candidate genes for metabolites detected in this study

ID Stagea LODb Interval (Mb) NAGc Candidate gene Annotation

m0032 GS 8.3 24.43–25.33 170 Os08g39300 Aminotransferase
m0032 MS 9.6 27.78–28.80 235 Os05g48010 MYB
m0052 GS 13 1.74–2.22 101 Os07g04560 No apical meristem protein
m0054 GS 27.7 19.82–20.02 29 Os12g32850 Cytochrome P450
m0054 MS 50.7 1.74–2.11 830 Os07g04410 Cytochrome P450 90C1
m0076 MS 5.8 6.48–6.76 49 Os06g12320 TAAC
m0155 FS 34.3 21.37–21.60 43 Os09g37200 Transferase family protein
m0159 MS 6.9 24.42–25.16 117 Os03g24339 PWWP
m0164 FS 12.5 5.63–6.90 195 Os09g12150 OsFBX310
m0164 FS 15.5 18.81–18.82 6 Os11g32650 Chalcone synthase
m0214 MS 72.8 20.06–20.21 35 Os09g34214 UDP
m0418 FS 29.8 37.33–37.95 146 Os01g65260 AT
m0478 MS 56.8 31.03–31.05 1 Os01g53460 O-glucosyltransferase
m0506 GS 7.3 5.17–2.27 182 Os01g10440 Xylosyltransferase
m0863 GS 37.3 7.37–10.02 119 Os09g16090 UDP
m0898 FS 68.7 9.56–10.32 144 Os10g18510 UDP
m1015 MS 16.8 2.30–2.74 107 Os06g05910 MDCP
m1073 MS 5.1 20.75–21.80 214 Os10g40200 Aminotransferase
m1085 MS 20.2 0.00–0.49 86 Os04g01590 Arginase
m1085 MS 12.6 27.74–27.95 45 Os05g48450 Aminotransferase
m1085 MS 5.7 2.42–4.02 355 Os06g05980 Transporter family protein
m1089 MS 5.2 23.58–24.08 87 Os12g39080 Amino acid permease
m1090 GS 12.6 1.51–2.03 173 Os06g03990 Aminotransferase
m1231 MS 48.4 7.92–10.80 498 Os12g16230 Exostosin
m1288 GS 110.8 24.80–24.98 25 Os11g42290 Transferase family protein
m1377 MS 62.8 25.79–25.91 23 Os11g42370 Transferase family protein
m1515 FS 9.7 0.00–0.92 213 Os01g01520 Transferase
m1644 FS 29.9 23.36–23.89 98 Os06g39470 Transferase
m1647 GS 8.41 32.72–33.62 178 Os01g56810 CDP
m1650 GS 23.9 1.83–2.17 77 Os07g04970 Transferase family protein
m2085 FS 40.6 9.19–10.32 208 Os10g18430 ACT
m2129 FS 151.4 5.24–5.36 23 Os06g10350 MYB
m2181 MS 84.4 22.45–23.39 166 Os12g37510 UDP
m2254 MS 68.2 24.06–24.66 130 Os05g41645 Chalcone synthase
m2270 FS 8.7 18.31–18.82 114 Os09g30980 UDP

The names of metabolites corresponding to ID are given in Table S5.
Annotation abbreviations: TAAC, transmembrane amino acid transporter; PWWP, PWWP domain containing protein; UDP, UDP-glucurono-
syl/UDP-glucosyl transferase; MDCP, methyltransferase domain containing protein; CDP, cytokinin dehydrogenase precursor; ACT, agmatine
coumaroyltransferase.
aGS, germinating seeds; MS, mature seeds; FS, grain-filling seeds.
bLOD, logarithm of odds.
cNAG, Number of annotated genes within QTL interval.
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Figure 5. Metabolite�metabolite and metabolite�agronomic trait association network. (a–c) Network visualization of metabolites analyzed in seeds during grain

filling (a), in mature seeds (b) and in germinating seeds (c). Only significant correlations are depicted. A significance level of P < 0.01 and an r value ≥0.7 or

≤�0.5 were considered significant. (d) Metabolite�agronomic trait association network. This illustration represents the union of the metabolite�agronomic trait

association network with the metabolic relevance networks obtained from each stage. Metabolites are represented as circular nodes, while triangular nodes rep-

resent agronomic traits. The size of each node is proportional to the number of correlated nodes. The color of each circular node indicates the class to which

the corresponding compound belongs. The Pearson product-moment correlation was employed to compute all pairwise correlations between metabolites or

metabolites and agronomic traits across the entire set of RILs. The relations are represented as edges. Positive correlations are denoted as solid lines, while

dashed lines indicate negative correlations. The width of each edge depends linearly on the absolute value of the corresponding correlation. Computations of

the correlations were conducted in the R environment, and Cytoscape was used to generate the graphics of the networks.
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detected from mature seeds (Table 2). Further analysis

revealed that Ghd7.1 is located in the QTL region for HD

on chromosome 7, which has been well documented as an

important determinant of rice HD (Koo et al., 2013; Liu

et al., 2013; Yan et al., 2013; Gao et al., 2014). This result

suggested a potential role for Ghd7.1 in coregulating HD

and metabolite accumulation, including that of trans-zeatin

N-glucoside.

DISCUSSION

As plant metabolites provide indispensable resources for

human nutrition, energy and medicine (Butelli et al., 2008;

Chen et al., 2016), dissecting the mechanism of metabolite

biosynthesis in plants draws extreme interest (Saito and

Matsuda, 2010; Cardoso et al., 2014; Quadrana et al., 2014;

Zhao et al., 2016; Fernie and Tohge, 2017; Perchat et al.,

2018; Tian et al., 2018). In recent years, the rapid develop-

ment of analysis approaches for metabolomes and multi-

omics techniques have greatly improved our knowledge of

the naturally occurring metabolic variation in plants and its

underlying genetic determinants in several species

(Keurentjes et al., 2008; Shang et al., 2014; Sadre et al.,

2016; Tohge et al., 2016; Wen et al., 2016; Fernie and

Tohge, 2017; Rai et al., 2017; Westhues et al., 2017; Xiao

et al., 2017; Zhu et al., 2018). As one of the most essential

crop species, rice (Oryza sativa L.) not only feeds approxi-

mately half of the human population worldwide but also

serves as a nutrition source. Hence, metabolic variation in

rice grains between japonica and indica subspecies and its

genetic basis have been well documented (Hu et al., 2014;

Chen et al., 2016). However, the accumulation patterns of

different metabolites within indica subspecies and their

genetic basis have rarely been reported. In addition, the

genetic and molecular bases of the plant metabolome of

seeds is still limited to one developmental stage. To deter-

mine the metabolic variation in rice grains at different

stages and disclose its genetic determinants, metabolic

profiling in seeds during grain filling, mature seeds and

germinating seeds was constructed with a population of

210 RILs derived from a cross between ZS97 and MH63

(Zhang et al., 2016).

In our previous study, 317 metabolites were detected in

germinating seeds of the same population. Distinct meta-

bolic patterns and their genetic basis in different tissues

were documented with data from leaves and germinating

seeds (Gong et al., 2013). In this study, by optimizing the

method, we profiled more than 2500 metabolites in seeds

at different developmental stages, of which 372 metabo-

lites were detected in seeds at three stages, and 338, 300,

and 237 were detected only in seeds during grain filling,

mature seeds, and germinating seeds, respectively. (Fig-

ure 1a and Table S3). Varying metabolite accumulation

patterns were found among samples at different stages of

the same line and among samples of different lines at the

same stage (Figure 2b). The stage-specific accumulation of

metabolites reflects the close association between bio-

chemical synthesis pathways and developmental stage.

The specific accumulation of amino acids, such as L-argi-

nine, L-asparagine, L-histidine, L-serine and L-threonine, and

the high content of the majority of other amino acids in

germinating seeds might be indicative of the active degra-

dation of stored protein. In addition, dynamic shifts in

metabolites across the three stages were detected.

Although Hu et al. (2014) characterized diverse meta-

bolic shifting in rice grains at different DAF, their work

mainly focused on the metabolite profiles concerning the

same biological process at various time points. Herein, we

identified the metabolic variation in different biological

processes in rice grains. Developmental stage and geno-

type consistently affecting metabolite variation was clari-

fied in both our study and the previously mentioned work,

despite differences between developmental stages and cul-

tivars used. Moreover, metabolite-metabolite correlation

analysis can be used to evaluate the coregulation of

groups of metabolites. Although both various samples

were used and different compounds were detected, a

strong correlation between L-leucine and L-isoleucine was

identified both in this study and the previously mentioned

work, suggesting the conserved coregulation of those

metabolites. In addition, conserved correlation across three

different stages were found in our study. For instance, 2-

amino-1,3,4,5-eicosanetetrol (m0344) and 4-hydroxy-sphin-

ganine (m1494) displayed a strong correlation across the

three aforementioned stages (Figure 5a–c and Table S9).

Further analysis revealed that mQTLs on chromosome 5

for 2-amino-1,3,4,5-eicosanetetrol and 4-hydroxysphinga-

nine shared the same segment, suggesting that there

might be a gene in this region regulates the accumulation

of those two compounds (Table S7). However, the previ-

ous study focused mainly on the relationship among iden-

tified compounds, leading to overlooking the correlations

between compounds and uncharacterized metabolites.

Nonbiased correlation network analysis in this work also

uncovered strong conserved (m0597�m1944) and stage-

specific (m0748�m1505 in germinating seeds) correlations

between unknown metabolites, which might be helpful for

studies on the characterization of compounds and their

genetic regulation. Although the metabolite�metabolite

correlation network displayed large variability across the

three stages, metabolites of the same class or those

involved in the same biochemical pathway tended to corre-

late with each other, which may help to elucidate new

metabolite synthesis pathways.

A previous study reported that an mQTL analysis of rice

grains resulted in the identification of 802 mQTLs for

approximately 60% of the compounds detected (Matsuda

et al., 2012). Herein, taking advantage of the ultra-high-den-

sity genetic map generated by population sequencing
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technology, we identified 1600, 1506 and 1575 metabolic

quantitative trait loci (mQTLs) for approximately 80% of

metabolites detected in seeds during grain filling, mature

seeds and germinating seeds, respectively (Table S3).

Although 372 metabolites were detected in the seeds at all

three stages and 366 metabolites had corresponding

mQTLs (Figure S8 and Table S7), only 48 metabolites had

60 mQTLs that shared overlapping segments across all

three stages, and approximately 1/4 of the metabolites had

distinct mQTLs across the three stages. Moreover, 70

mQTLs for 46 metabolites were identified at a specific stage

(Table S7), which indicated a development-dependent man-

ner of metabolite biosynthesis control. Further analysis

revealed that the 46 metabolites were distributed in various

classes, such as fatty acids, polyphenols, amino acids and

vitamin, etc. A previous study identified significant mQTLs

for asparagine and a putative asparagine synthase as a can-

didate gene on chromosome 3 via japonica-indica-derived

ILs (Matsuda et al., 2012). However, the validation of the

candidate gene was lacking. In this study, seven putative

mQTLs for L-asparagine were identified, which were dis-

tributed across five chromosomes (Table S7). A gene

encoding an aminotransferase, LOC_Os06g03990, was con-

sidered as a genetic determinant for the metabolic variation

of L-asparagine in RILs. Sequence alignment identified four

different amino acid residuals between MH63 and ZS97,

including an alternation from valine (V) to methionine (M)

in the predicted conserved aminotransferase class I and II

domain, which may affect the activity of LOC_Os06g03990

(Figure 4b and Figure S7). Moreover, LOC_Os06g03990 was

validated as a repressor of L-asparagine content by a

transgenic approach. This finding revealed the genetic basis

of metabolite variation among different varieties.

In seeds during grain filling, compared with that in ger-

minating seeds, the expression of LOC_Os06g03990

increased and the content of L-asparagine decreased (Fig-

ure 2c and Figure S6b). In addition, we also found that the

expression of LOC_Os07g04970 in seed tissues during

grain filling was higher than in germinating seeds and that

the content of ferulylserotonin (Figures S6a and S4b).

These results suggested that the altered expression level

of the key genes across different stages may be responsi-

ble for the metabolic shift.

Moreover, metabolite�agronomic trait association and

colocation between mQTLs and pQTLs revealed the com-

plexity of the metabolite�agronomic trait relationship and

the corresponding genetic basis. Through further data min-

ing, more than 30 candidate genes modulating the accu-

mulation of metabolites that are of potential physiological

and nutritional importance were identified.

This study significantly improved our knowledge of the

genetic and biochemical bases of rice seed metabolome

variation at different stages and provides profound insights

into rice breeding strategies that increase yields while

maintaining high nutritional levels.

EXPERIMENTAL PROCEDURES

Plant materials and growth conditions

The RILs population used for linkage mapping are of 210 lines
derived from a cross between ZS97 and MH63 (Zhang et al.,
2016). The rice plants used in this study were grown during the

Table 2 Co-localization between the mQTLs and pQTLs for heading date

Traita Corb Chr LODc Left Marker Right Marker Compound

HD 6 7.74 Bin855 Bin856
m1894_MS �0.53 6 3.76 Bin843 Bin860 Unknown
m1293_MS 0.51 6 4.54 Bin845 Bin857 20-Deoxyadenosine monohydrate
m1691_GS 0.64 6 4.25 Bin847 Bin858 Unknown
m1477_MS 0.68 6 3.58 Bin847 Bin859 Unknown
m1689_MS 0.55 6 4.44 Bin850 Bin861 Unknown
m0612_MS 0.52 6 9.08 Bin855 Bin860 Unknown
m0076_MS �0.53 6 3.25 Bin846 Bin856 L-tryptophan
m0036_MS �0.46 6 3.38 Bin843 Bin861 L-histidine
m0601_MS 0.56 6 6.12 Bin850 Bin860 Phellodensin F
m1920_MS 0.54 6 5.33 Bin851 Bin859 Unknown
HD 7 5.76 Bin1057 Bin1058
m0346_FS �0.63 7 3.77 Bin1056 Bin1058 Unknown
m0739_MS 0.60 7 3.32 Bin1056 Bin1058 C-hexosyl-apigenin O-hexoside
m0368_MS �0.44 7 5.96 Bin1055 Bin1058 Trans-zeatin N-glucoside
HD 11 4.31 Bin1411 Bin1412 Unknown
m0291_MS 0.36 11 5.05 Bin1412 Bin1418 Protocatechuic acid O-hexoside

aHD, heading date; GS, germinating seeds; MS, mature seeds; FS, grain-filling seeds.
bThe correlation between metabotype and phenotype.
cLOD, logarithm of odds.
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normal rice growing seasons in the field at the experimental farm
of Huazhong Agricultural University (Wuhan, China, E 109°510, N
18°250). All the seeds were germinated for 3 days at 37°C on filter
paper soaked in distilled water and then planted in seedbeds in
mid-May; the seedlings were subsequently transplanted into the
field in mid-June. The field management followed normal agricul-
tural practices.

Sample preparation

(i) Germinating seeds. The seeds of RILs, MH63 and ZS97 were
first soaked in water for 2 days under 25°C and 85% relative
humidity in the dark. Subsequently, the pregermination (35°C tem-
perature, 85% relative humidity, darkness) was conducted, fol-
lowed by the incubation for 72 h (25°C temperature, 85% relative
humidity, darkness). We harvested the seeds from 15 seedlings
per line to extract the metabolites. (ii) Seeds during grain filling.
The seeds during grain filling were prepared 10 DAF in 2009 using
liquid nitrogen for metabolite extraction. Each sample was from
three different plants per line grown in the field. (iii) Mature seeds.
Mature seeds were harvested at the mature stage in 2009. Each
sample contained 10 seeds for metabolite extraction.

Metabolite profiling

We powdered freeze-dried samples using a mix mill (MM 400
Retsch) with a zirconia bead for 1 min at 30 Hz. Then, 1.0 ml of
70% aqueous methanol per 100 mg of powder was used for
metabolite extraction (overnight at 4°C), containing 0.1 mg L�1

lidocaine as internal standard (Chen et al., 2013). We performed
an MRM method to quantify m-traits (Dresen et al., 2010; Matsuda
et al., 2012; Chen et al., 2013). The relative signal intensities of the
metabolites were normalized by first dividing them by the intensi-
ties of the internal standard (0.1 mg L�1 lidocaine) and then sub-
jecting them to log2 transformation to improve the normality
further. In total, 810, 836 and 855 transitions in mature seeds, ger-
minating seeds, and seeds during grain filling were monitored,
respectively, with positive polarity. We used the scheduled MRM
algorithm in Analyst 1.5 software, setting the MRM detection win-
dow to 80 sec and the target scan time to 1.5 sec.

Statistical analysis

The metabolite data of the RIL population comprise the means of
three technical replications from the LC-MS/MS of one biological
replicates. For each individual metabolite, the content was given
as the average of the normalized metabolite levels in three replica-
tions. Totally, 810, 836 and 855 m-traits were obtained in the
mature seeds, the germinating seeds and, the seeds during grain
filling, respectively. We calculated the values of the genetic CV for
each compound as previously described (Chan et al., 2013). Pair-
wise Pearson correlations between metabolites detected were
estimated by R (www.r-project.org). Subsequently, Gaussian
graphical modeling (GGM) was constructed based on pairwise
Pearson correlation coefficients. Metabolite networks and metabo-
lite-agronomic trait networks were constructed based on the cor-
relation matrices and realized by the program Cytoscape (3.7.0).

QTL mapping and detection of mQTL hot spots

We conducted a QTL mapping with the RIL population as
described in previous works (Weibo et al., 2010; Yu et al., 2011;
Gong et al., 2013). Bin maps were composed of 1619 recombinant
bins without missing data. We set the LOD threshold to 3.0, with a
1.5-LOD-drop support interval. The whole genome was divided
into 1 cM partitions. A permutation test was performed as

previously described (Gong et al., 2013). According to the results
of 1000 permutations, the cutoff number of mQTLs per cM by
chance alone was estimated to be seven, seven, and eight in the
mature seeds, germinating seeds, and the seeds during grain fill-
ing, respectively. A larger number of mQTLs in 1 cM indicates the
existence of an mQTL hot spot.

Plasmid construction and rice transformation

Gateway recombination reactions (Invitrogen, Waltham, MA,
USA) were performed to generate the overexpression construct of
Os06g03990. Firstly, the full cDNA was amplified from cDNA sam-
ples of ZH11, encoding the same protein sequence with that from
MH63. Then, the full cDNA was inserted into the donor vector
pDONR207, producing the entry clone, which was subjected to an
LR reaction with the destination vector pJC034 (Dong et al., 2015).
The overexpression construct of Os06g03990 was subsequently
introduced into Agrobacterium strain AH105 and then transferred
into japonica ZH11 as described previously (Hiei et al., 1994).
LOC_Os06g03990 cDNA was amplified by PCR with a set of pri-
mers named OJT31 and OJT32 (Table S11), with leaf-derived
cDNA used as a template.

RT-PCR

Total RNA was extracted with TRIzol reagent (Invitrogen, Waltham,
MA, USA), followed by treatment with DNase I (Thermo Scientific,
Waltham, MA, USA). Subsequently, 3 lg of RNA was used for syn-
thesis of the first-strand with M-MLV reverse transcriptase
(ZOMANBIO, Beijing, China). We conducted RT-PCR to detect the
expression of targeted genes using primers listed in Table S11.
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Figure S6. Expression profiles of LOC_07g04970 and
LOC_Os06g03990 in MH63 and ZS97.

Figure S7. Variations of amino acid residues of LOC_Os06g03990
between MH63 and ZS97.

Figure S8. Venn diagram for the number of metabolites with
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