23 research outputs found
Three-Leaf Dart-Shaped Single-Crystal BN Formation Promoted by Surface Oxygen
Two-dimensional hexagonal boron nitride (h-BN) single crystals with various
shapes have been synthesized by chemical vapor deposition over the past several
years. Here we report the formation of three-leaf dart (3LD)-shaped single
crystals of h-BN on Cu foil by atmospheric-pressure chemical vapor deposition.
The leaves of the 3LD-shaped h-BN are as long as 18 {\mu}m and their edges are
smooth armchair on one side and stepped armchair on the other. Careful analysis
revealed that surface oxygen plays an important role in the formation of the
3LD shape. Oxygen suppressed h-BN nucleation by passivating Cu surface active
sites and lowered the edge attachment energy, which caused the growth kinetics
to change to a diffusion-controlled mode.Comment: 7 pages,6 figure
Inversion Domain Boundary Induced Stacking and Bandstructure Diversity in Bilayer MoSe2
Interlayer rotation and stacking were recently demonstrated as effective strategies for tuning physical properties of various two-dimensional materials. The latter strategy was mostly realized in heterostructures with continuously varied stacking orders, which obscure the revelation of the intrinsic role of a certain stacking order in its physical properties. Here, we introduce inversion-domain-boundaries into molecular-beam-epitaxy grown MoSe2 homobilayers, which induce uncommon fractional lattice translations to their surrounding domains, accounting for the observed diversity of large-area and uniform stacking sequences. Low-symmetry stacking orders were observed using scanning transmission electron microscopy and detailed geometries were identified by density functional theory. A linear relation was also revealed between interlayer distance and stacking energy. These stacking sequences yield various energy alignments between the valence states at the Γ and K points of the Brillouin zone, showing stacking-dependent bandgaps and valence band tail states in the measured scanning tunneling spectroscopy. These results may benefit the design of two-dimensional multilayers with manipulable stacking orders
Small transition-metal dichalcogenide nanostructures down to subnanometer by two-dimensional material origami
Origami is a promising method for creating various structures from filmlike materials via local deconstruction rather than elastic bending. Transition-metal dichalcogenides (TMDCs) have high bending stiffness making the formation of highly curved nanostructures, such as nanotube or nanocages, via bending difficult. Here, we propose the use of two-dimensional (2D) material origami to build stable TMDC nanostructures. Various nanostructures, such as polygonal nanotubes or polyhedral nanocages, can be created by introducing line defects, which incurs only a very small energy penalty. Through first-principles calculations and high-resolution transmission electron microscopy imaging, we confirmed their stability and the possibility of synthesis experimentally via line defect formation. As an example, the widely observed TMDC nanowires are produced with this approach, and many experimentally observed nanostructures agree with these origami creases/line defects. This work opens a door to synthesize nanostructures of few-atomic-thick 2D materials for various potential applications
Trichostatin A Induced Microspore Embryogenesis and Promoted Plantlet Regeneration in Ornamental Kale (<i>Brassica oleracea</i> var. <i>acephala</i>)
Cut flower ornamental kale (Brassica oleracea var. acephala) is a biennial cultivar, which completes a sexual reproductive generation in two years. Isolated microspore culture (IMC) can accelerate plant homozygosity instead of self-pollinations. However, the application of IMC in cut flower ornamental kale was rare since its low rate of embryogenesis. It is proved that histone acetylation might affect the gene expression in microspores and led to the transformation of microspores from pollen development pathway to embryogenesis. In this paper, microspores, derived from three varieties of cut flower ornamental kale, Crane Bicolor (CB), Crane Pink (CP) and Crane Feather Queen (CFQ), were treated with histone deacetylation inhibitor (HDACI) trichostatin A (TSA). Results revealed that the appropriate concentration of TSA was 10 nM for CB with obtaining 5.39 embryos per bud, while for CP and CFQ was 5 nM with acquiring 10.89 and 16.99 embryos per bud, respectively. TSA treatment also reduced the embryonic mortality, of which 10 nM TSA treatments CB was the optimal and the embryonic mortality decreased to 25.01%. The double haploid (DH) proportion of regenerated plants reached 37.3%. These results contribute to improving the technology for IMC in cut flower ornamental kale
Pt-Cu alloy with high density of surface Pt defects for efficient catalysis of breaking C-C bond in ethanol
Natural Science Foundation of Fujian Province [2013J06006]; National Natural Science Foundation of China [91127020, 21171163]; National Key Project on Basic Research [2011CB935904]; NSFC [5122202]; Fundamental Research Funds for the Central Universities [2012QNA4005]The Pt-Cu alloy/C (AC-PtCu-4/C) with uniform nanoparticles and high density of surface defects was synthesized by the microwave-polyol technique following acid-treatment. The AC-PtCu-4/C contained much higher density of surface defects than did the commercial Pt/C. Electrochemical characterization demonstrated that the AC-PtCu-41C exhibited mass activity and surface activity 4.8 and 3.9 times higher than those of Pt/C for ethanol oxidation. Moreover, the AC-PtCu-4/C can enhance the C-C bond cleavage of ethanol to generate CO2 2.47 times more than that of Pt/C under the same conditions, as evidenced by in situ FTIR reflection spectroscopy. (C) 2014 Elsevier Ltd. All rights reserved
Trichostatin A Induced Microspore Embryogenesis and Promoted Plantlet Regeneration in Ornamental Kale (Brassica oleracea var. acephala)
Cut flower ornamental kale (Brassica oleracea var. acephala) is a biennial cultivar, which completes a sexual reproductive generation in two years. Isolated microspore culture (IMC) can accelerate plant homozygosity instead of self-pollinations. However, the application of IMC in cut flower ornamental kale was rare since its low rate of embryogenesis. It is proved that histone acetylation might affect the gene expression in microspores and led to the transformation of microspores from pollen development pathway to embryogenesis. In this paper, microspores, derived from three varieties of cut flower ornamental kale, Crane Bicolor (CB), Crane Pink (CP) and Crane Feather Queen (CFQ), were treated with histone deacetylation inhibitor (HDACI) trichostatin A (TSA). Results revealed that the appropriate concentration of TSA was 10 nM for CB with obtaining 5.39 embryos per bud, while for CP and CFQ was 5 nM with acquiring 10.89 and 16.99 embryos per bud, respectively. TSA treatment also reduced the embryonic mortality, of which 10 nM TSA treatments CB was the optimal and the embryonic mortality decreased to 25.01%. The double haploid (DH) proportion of regenerated plants reached 37.3%. These results contribute to improving the technology for IMC in cut flower ornamental kale
Identification of a Leafy Head Formation Related Gene in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)
Leafy head formation is one of the most important characteristics of Chinese cabbage, and the process is regulated by a series of genes and environmental factors. In this study, a non-heading short leaf mutant slm was identified from an ethyl methane sulfonate mutagenesis (EMS) population of the heading Chinese cabbage line FT. The most significant phenotypic characteristics of slm was shortening leaves and increasing leaf numbers, which led to failure to form a leafy head. Genetic analysis showed that a single recessive gene Brslm was responsible for the mutant phenotype. Mutmap analysis suggested that Brslm was located on chromosome A07, and four candidate genes were predicted. KASP analysis demonstrated that BraA07g039390.3C was the target gene of the candidates. BraA07g039390.3C is a homologous to Arabidopsis CLV1 encoding receptor kinase with an extracellular leucine-rich domain. Sequencing analysis revealed that a single SNP from G to A occurred in 904th nucleotide of Brclv1, which resulted in the change of the 302nd amino acid from Asp to Asn. The SNP was co-segregated with the mutant phenotype in F2 individuals and located on the conserved domains. These results indicated that BrCLV1 was the mutant gene for slm which led to shortening leaves and increasing leaf numbers, disrupting the leafy heading formation in FT. These findings contribute to revealing the BrCLV1 function in leafy head formation in Chinese cabbage
Characterization and Purification of Bergamottin from Citrus grandis (L.) Osbeck cv. Yongjiazaoxiangyou and Its Antiproliferative Activity and Effect on Glucose Consumption in HepG2 cells
Bergamottin is a natural furanocoumarin compound with weak polarity. Characterization and quantification of bergamottin were carried out in different fruit tissues of various citrus cultivars. Among the four citrus tissues tested, i.e., flavedo, albedo, segment membrane (SM), and juice sacs (JS) in eight citrus cultivars, the highest bergamottin content was found in the flavedo of Citrus grandis (L.) Osbeck cv. Yongjiazaoxiangyou (YJZXY, 666.54 μg·g−1 DW). A combination of silica gel column chromatography and high-speed counter-current chromatography (HSCCC) was established to efficiently purify bergamottin from the flavedo of YJZXY. Bergamottin showed significant antiproliferative activity on three cancer cell lines, i.e., human liver cancer HepG2, promyelocytic leukemia HL-60, and gastric cancer BGC-823 cells, which showed a marked inhibition effect on these cell lines in a dose-dependent manner. In addition, bergamottin significantly increased glucose consumption in HepG2 cells also in a dose-dependent manner, which is the first report of its potential in anti-diabetes applications