808 research outputs found

    Interferon regulatory factor-1 together with reactive oxygen species promotes the acceleration of cell cycle progression by up-regulating the cyclin E and CDK2 genes during high glucose-induced proliferation of vascular smooth muscle cells

    Get PDF
    BACKGROUND: The high glucose-induced proliferation of vascular smooth muscle cells (VSMCs) plays an important role in the development of diabetic vascular diseases. In a previous study, we confirmed that Interferon regulatory factor-1 (Irf-1) is a positive regulator of the high glucose-induced proliferation of VSMCs. However, the mechanisms remain to be determined. METHODS: The levels of cyclin/CDK expression in two cell models involving Irf-1 knockdown and overexpression were quantified to explore the relationship between Irf-1 and its downstream effectors under normal or high glucose conditions. Subsequently, cells were treated with high glucose/NAC, normal glucose/H(2)O(2), high glucose/U0126 or normal glucose/H(2)O(2)/U0126 during an incubation period. Then proliferation, cyclin/CDK expression and cell cycle distribution assays were performed to determine whether ROS/Erk1/2 signaling pathway was involved in the Irf-1-induced regulation of VSMC growth under high glucose conditions. RESULTS: We found that Irf-1 overexpression led to down-regulation of cyclin D1/CDK4 and inhibited cell cycle progression in VSMCs under normal glucose conditions. In high glucose conditions, Irf-1 overexpression led to an up-regulation of cyclin E/CDK2 and an acceleration of cell cycle progression, whereas silencing of Irf-1 suppressed the expression of both proteins and inhibited the cell cycle during the high glucose-induced proliferation of VSMCs. Treatment of VSMCs with antioxidants prevented the Irf-1 overexpression-induced proliferation of VSMCs, the up-regulation of cyclin E/CDK2 and the acceleration of cell cycle progression in high glucose conditions. In contrast, under normal glucose conditions, H(2)O(2) stimulation and Irf-1 overexpression induced cell proliferation, up-regulated cyclin E/CDK2 expression and promoted cell cycle acceleration. In addition, overexpression of Irf-1 promoted the activation of Erk1/2 and when VSMCs overexpressing Irf-1 were treated with U0126, the specific Erk1/2 inhibitor abolished the proliferation of VSMCs, the up-regulation of cyclin E/CDK2 and the acceleration of cell cycle progression under high glucose or normal glucose/H(2)O(2) conditions. CONCLUSIONS: These results demonstrate that the downstream effectors of Irf-1 are cyclin E/CDK2 during the high glucose-induced proliferation of VSMCs, whereas they are cyclin D1/CDK4 in normal glucose conditions. The Irf-1 overexpression-induced proliferation of VSMCs, the up-regulation of cyclin E/CDK2 and the acceleration of cell cycle progression are associated with ROS/Erk1/2 signaling pathway under high glucose conditions

    Malnutrition and inflammation in acute kidney injury due to earthquake-related crush syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malnutrition and inflammation are common and serious complications in patients with acute kidney injury (AKI). However, the profile of these complications in patients with AKI caused by crush syndrome (CS) remains unclear. This study describes the clinical characteristics of malnutrition and inflammation in patients with AKI and CS due to the Wenchuan earthquake.</p> <p>Methods</p> <p>One thousand and twelve victims and eighteen healthy adults were recruited to the study. They were divided into five groups: Group A was composed of victims without CS and AKI (904 cases); Group B was composed of patients with CS and AKI who haven't received renal replacement therapy (RRT) (57 cases); and Group C was composed of patients with CS and AKI receiving RRT (25 cases); Group D was composed of earthquake victims with AKI but without CS (26 cases); and Group E was composed of 18 healthy adult controls. The C-reactive protein (CRP), prealbumin, transferrin, interleukin-6 and TNF-α were measured and compared between Group E and 18 patients from Group C.</p> <p>Results</p> <p>The results indicate that participants in Group C had the highest level of serum creatinine, blood urea nitrogen and uric acid. Approximately 92% of patients with CS who had RRT were suffering from hypoalbuminemia. The interleukin-6 and CRP levels were significantly higher in patients with CS AKI receiving RRT than in the control group. Patients in Group C received the highest dosages of albumin, plasma or red blood cell transfusions. One patient in Group C died during treatment.</p> <p>Conclusions</p> <p>Malnutrition and inflammation was common in patients with earthquake-related CS and had a negative impact on the prognosis of these subjects. The results of this study indicate that the use of RRT, intensive nutritional supplementation and transfusion alleviated the degree of malnutrition and inflammation in hemodialysis patients with crush syndrome.</p

    Artificial intelligence : A powerful paradigm for scientific research

    Get PDF
    Y Artificial intelligence (AI) coupled with promising machine learning (ML) techniques well known from computer science is broadly affecting many aspects of various fields including science and technology, industry, and even our day-to-day life. The ML techniques have been developed to analyze high-throughput data with a view to obtaining useful insights, categorizing, predicting, and making evidence-based decisions in novel ways, which will promote the growth of novel applications and fuel the sustainable booming of AI. This paper undertakes a comprehensive survey on the development and application of AI in different aspects of fundamental sciences, including information science, mathematics, medical science, materials science, geoscience, life science, physics, and chemistry. The challenges that each discipline of science meets, and the potentials of AI techniques to handle these challenges, are discussed in detail. Moreover, we shed light on new research trends entailing the integration of AI into each scientific discipline. The aim of this paper is to provide a broad research guideline on fundamental sciences with potential infusion of AI, to help motivate researchers to deeply understand the state-of-the-art applications of AI-based fundamental sciences, and thereby to help promote the continuous development of these fundamental sciences.Peer reviewe

    Source of highly potassic basalts in northeast China: Evidence from Re-Os, Sr-Nd-Hf isotopes and PGE geochemistry

    Get PDF
    The origin of the very young (0.5Ma to 1721AD) Wudalianchi-Erkeshan (WDLC and EKS) highly potassic basalts in northeast (NE) China has been the subject of considerable debate. In this study, we present new major-, trace- and platinum group element (PGE) data together with Re-Os, Lu-Hf, and Sr-Nd isotopic analyses for these potassic basalts in order to further constrain their source. It has been shown that the WDLC and EKS basalts have unradiogenic to only moderately radiogenic osmium isotope ratios with 187Os/188Os ranging from 0.1187 to ~0.17, and only slight PPGE (Pt and Pd) enrichments relative to IPGE (Os, Ir and Ru). The positive correlations between 187Os/188Os and 1/Os suggests that these basalts have probably experienced about 2-8% of lower continental crust addition during magma ascent. On the other hand, the incorporation of sub-continental lithospheric mantle (SCLM)-derived, primary sulphides and/or PGE micro-alloys during magma ascent seems likely in some basalts, which preserve particularly unradiogenic Os compositions. The complex interplay of signatures derived from crustal and SCLM contamination means that the Os isotope systematics of the basalts do not unequivocally fingerprint the source of the WDLC and EKS basalts.The strong enrichments of light rare earth elements (LREE) and large ion lithophile elements (LILE), high-K, EM1-like Sr-Nd-Hf isotopic characteristics, and particularly strong fractionation of the heavy REE ((Sm/Yb)N=9.7±0.6), suggest that the WDLC and EKS basalts mainly originated from phlogopite-bearing garnet-peridotite in the SCLM. Combined with low Ce/Pb ratios (~9.4-13.5), the most likely source of WDLC and EKS basalts is SCLM that has been metasomatized by delaminated old, lower continental crust. This is different from previous hypotheses that implicate a dominantly asthenospheric source with a contribution from delaminated ancient SCLM or subducted oceanic crust with sediments, or a SCLM source that has been metasomatized by melts derived from deep asthenosphere during the Proterozoic

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO
    • …
    corecore