3,021 research outputs found

    Crater formation during raindrop impact on sand

    Get PDF
    After a raindrop impacts on a granular bed, a crater is formed as both drop and target deform. After an initial, transient, phase in which the maximum crater depth is reached, the crater broadens outwards until a final steady shape is attained. By varying the impact velocity of the drop and the packing density of the bed, we find that avalanches of grains are important in the second phase and hence, affect the final crater shape. In a previous paper, we introduced an estimate of the impact energy going solely into sand deformation and here we show that both the transient and final crater diameter collapse with this quantity for various packing densities. The aspect ratio of the transient crater is however altered by changes in the packing fraction.Comment: 9 pages, 9 figure

    Liquid-grain mixing suppresses droplet spreading and splashing during impact

    Get PDF
    Would a raindrop impacting on a coarse beach behave differently from that impacting on a desert of fine sand? We study this question by a series of model experiments, where the packing density of the granular target, the wettability of individual grains, the grain size, the impacting liquid, and the impact speed are varied. We find that by increasing the grain size and/or the wettability of individual grains the maximum droplet spreading undergoes a transition from a capillary regime towards a viscous regime, and splashing is suppressed. The liquid-grain mixing is discovered to be the underlying mechanism. An effective viscosity is defined accordingly to quantitatively explain the observations

    Assessment of density functional methods with correct asymptotic behavior

    Full text link
    Long-range corrected (LC) hybrid functionals and asymptotically corrected (AC) model potentials are two distinct density functional methods with correct asymptotic behavior. They are known to be accurate for properties that are sensitive to the asymptote of the exchange-correlation potential, such as the highest occupied molecular orbital energies and Rydberg excitation energies of molecules. To provide a comprehensive comparison, we investigate the performance of the two schemes and others on a very wide range of applications, including the asymptote problems, self-interaction-error problems, energy-gap problems, charge-transfer problems, and many others. The LC hybrid scheme is shown to consistently outperform the AC model potential scheme. In addition, to be consistent with the molecules collected in the IP131 database [Y.-S. Lin, C.-W. Tsai, G.-D. Li, and J.-D. Chai, J. Chem. Phys., 2012, 136, 154109], we expand the EA115 and FG115 databases to include, respectively, the vertical electron affinities and fundamental gaps of the additional 16 molecules, and develop a new database AE113 (113 atomization energies), consisting of accurate reference values for the atomization energies of the 113 molecules in IP131. These databases will be useful for assessing the accuracy of density functional methods.Comment: accepted for publication in Phys. Chem. Chem. Phys., 46 pages, 4 figures, supplementary material include

    More on volume dependence of spectral weight function

    Full text link
    Spectral weight functions are easily obtained from two-point correlation functions and they might be used to distinguish single-particle from multi-particle states in a finite-volume lattice calculation, a problem crucial for many lattice QCD simulations. In previous studies, it is shown that the spectral weight function for a broad resonance shares the typical volume dependence of a two-particle scattering state i.e. proportional to 1/L31/L^3 in a large cubic box of size LL while the narrow resonance case requires further investigation. In this paper, a generalized formula is found for the spectral weight function which incorporates both narrow and broad resonance cases. Within L\"uscher's formalism, it is shown that the volume dependence of the spectral weight function exhibits a single-particle behavior for a extremely narrow resonance and a two-particle behavior for a broad resonance. The corresponding formulas for both A1+A^+_1 and T1T^-_1 channels are derived. The potential application of these formulas in the extraction of resonance parameters are also discussed

    Interaction between counter-propagating quantum Hall edge channels in the 3D topological insulator BiSbTeSe2_2

    Get PDF
    The quantum Hall effect is studied in the topological insulator BiSbTeSe2_2. By employing top- and back-gate electric fields at high magnetic field, the Landau levels of the Dirac cones in the top and bottom topological surface states can be tuned independently. When one surface is tuned to the electron-doped side of the Dirac cone and the other surface to the hole-doped side, the quantum Hall edge channels are counter-propagating. The opposite edge mode direction, combined with the opposite helicities of top and bottom surfaces, allows for scattering between these counter-propagating edge modes. The total Hall conductance is integer valued only when the scattering is strong. For weaker interaction, a non-integer quantum Hall effect is expected and measured

    Radiative transitions in charmonium from Nf=2N_f=2 twisted mass lattice QCD

    Full text link
    We present a study for charmonium radiative transitions: J/ψηcγJ/\psi\rightarrow\eta_c\gamma, χc0J/Ψγ\chi_{c0}\rightarrow J/\Psi\gamma and hcηcγh_c\rightarrow\eta_c\gamma using Nf=2N_f=2 twisted mass lattice QCD gauge configurations. The single-quark vector form factors for ηc\eta_c and χc0\chi_{c0} are also determined. The simulation is performed at a lattice spacing of a=0.06666a= 0.06666 fm and the lattice size is 323×6432^3\times 64. After extrapolation of lattice data at nonzero Q2Q^2 to 0, we compare our results with previous quenched lattice results and the available experimental values.Comment: typeset with revtex, 15 pages, 11 figures, 4 table

    Observer-biased bearing condition monitoring: from fault detection to multi-fault classification

    Get PDF
    Bearings are simultaneously a fundamental component and one of the principal causes of failure in rotary machinery. The work focuses on the employment of fuzzy clustering for bearing condition monitoring, i.e., fault detection and classification. The output of a clustering algorithm is a data partition (a set of clusters) which is merely a hypothesis on the structure of the data. This hypothesis requires validation by domain experts. In general, clustering algorithms allow a limited usage of domain knowledge on the cluster formation process. In this study, a novel method allowing for interactive clustering in bearing fault diagnosis is proposed. The method resorts to shrinkage to generalize an otherwise unbiased clustering algorithm into a biased one. In this way, the method provides a natural and intuitive way to control the cluster formation process, allowing for the employment of domain knowledge to guiding it. The domain expert can select a desirable level of granularity ranging from fault detection to classification of a variable number of faults and can select a specific region of the feature space for detailed analysis. Moreover, experimental results under realistic conditions show that the adopted algorithm outperforms the corresponding unbiased algorithm (fuzzy c-means) which is being widely used in this type of problems. (C) 2016 Elsevier Ltd. All rights reserved.Grant number: 145602

    Generalized Delayed Feedback Model with Post-Click Information in Recommender Systems

    Full text link
    Predicting conversion rate (e.g., the probability that a user will purchase an item) is a fundamental problem in machine learning based recommender systems. However, accurate conversion labels are revealed after a long delay, which harms the timeliness of recommender systems. Previous literature concentrates on utilizing early conversions to mitigate such a delayed feedback problem. In this paper, we show that post-click user behaviors are also informative to conversion rate prediction and can be used to improve timeliness. We propose a generalized delayed feedback model (GDFM) that unifies both post-click behaviors and early conversions as stochastic post-click information, which could be utilized to train GDFM in a streaming manner efficiently. Based on GDFM, we further establish a novel perspective that the performance gap introduced by delayed feedback can be attributed to a temporal gap and a sampling gap. Inspired by our analysis, we propose to measure the quality of post-click information with a combination of temporal distance and sample complexity. The training objective is re-weighted accordingly to highlight informative and timely signals. We validate our analysis on public datasets, and experimental performance confirms the effectiveness of our method.Comment: NeurIPS'2

    Non-local signatures of the chiral magnetic effect in Dirac semimetal Bi0.97_{0.97}Sb0.03_{0.03}

    Get PDF
    The field of topological materials science has recently been focussing on three-dimensional Dirac semimetals, which exhibit robust Dirac phases in the bulk. However, the absence of characteristic surface states in accidental Dirac semimetals (DSM) makes it difficult to experimentally verify claims about the topological nature using commonly used surface-sensitive techniques. The chiral magnetic effect (CME), which originates from the Weyl nodes, causes an EB\textbf{E}\cdot\textbf{B}-dependent chiral charge polarization, which manifests itself as negative magnetoresistance. We exploit the extended lifetime of the chirally polarized charge and study the CME through both local and non-local measurements in Hall bar structures fabricated from single crystalline flakes of the DSM Bi0.97_{0.97}Sb0.03_{0.03}. From the non-local measurement results we find a chiral charge relaxation time which is over one order of magnitude larger than the Drude transport lifetime, underlining the topological nature of Bi0.97_{0.97}Sb0.03_{0.03}.Comment: 6 pages, 6 figures + 7 pages of supplemental materia
    corecore