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Interaction between counter-propagating quantum Hall edge channels in the 3D topological
insulator BiSbTeSe2
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The quantum Hall effect is studied in the topological insulator BiSbTeSe2. By employing top- and back-gate
electric fields at high magnetic field, the Landau levels of the Dirac cones in the top and bottom topological
surface states can be tuned independently. When one surface is tuned to the electron-doped side of the Dirac
cone and the other surface to the hole-doped side, the quantum Hall edge channels are counter-propagating.
The opposite edge mode direction, combined with the opposite helicities of top and bottom surfaces, allows for
scattering between these counter-propagating edge modes. The total Hall conductance is expected to be integer
valued only when the scattering is strong. For weaker interaction, a noninteger quantum Hall effect is expected
and indications for this effect are measured.
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I. INTRODUCTION

The quantum Hall effect (QHE) can be described by the for-
mation of quantized edge state conduction. The conductance
of quantum Hall edge modes in a semiconductor is given by
2nG0, where n is the number of modes (linked to the Landau
level filling number of the bulk), the multiplication by two
is to account for two spins, and G0 = e2

h
is the conductance

quantum [1]. When the electronic dispersion of a material
is given by the Dirac equation, the first bulk Landau level
sits at the Dirac point and simply provides a conductance
contribution of only G0

2 , as can be explained by the extra Berry
phase of π that is obtained in a Landau orbit. For graphene,
one then obtains an edge conduction of 4(n + 1

2 )G0, where the
factor of four comes from the twofold spin degeneracy and the
twofold orbital degeneracy due to there being Dirac points at
the crystallographic K and K′ points [2].

After the discovery of topological insulators, it was soon
understood that the Dirac cone of the topological surface state
(TSS) of a three-dimensional topological insulator (TI) is not
spin degenerate, except at particular Kramer’s momenta. Like
for graphene, the Berry phase argument provides an offset of
1
2 , and the direction of the conduction channels is determined
by the position of the Fermi level in the Dirac cone with
respect to the Dirac point (electrons versus holes). Every
surface (e.g., top and bottom) then provides an edge conduction
of (n + 1

2 )G0, rendering the TSS effectively equivalent to
one-quarter of graphene [3]. The top (t) and bottom (b)
surfaces of a 3D topological insulator posses Dirac cones
of opposite helicities. When the two surfaces are gate tuned
so that the Fermi energy in both systems is either above or
below the Dirac point (i.e., two electron or two hole Fermi
surfaces), the edge modes of the two surfaces propagate in
the same direction, but with opposite helicity. Due to their
orthogonality no scattering from one to the other is quantum
mechanically allowed. In such a case, the parallel mode con-
ductances add up, yielding an integer quantum Hall effect, i.e.,
the Hall conductance Gxy = (nt + nb + 1)G0. This integer
quantization has indeed been observed for 3D topological
insulators such as BiSbTeSe2 [4,5], (Bi1−xSbx)2Te3 [6], HgTe
[7], and magnetically doped topological insulators, where the

role of the external magnetic field is replaced by an internal
magnetization [8,9].

However, when the top and bottom surfaces of a 3D
topological insulator are gate-tuned to different sides of the
Dirac point (i.e., one electron and one hole Fermi surface) the
edge modes of the two surfaces are counter-propagating, as
shown in Fig. 1(a). In this case, the helicities of the states are
equal as the sign reversal going from top to bottom surface is
canceled by the sign reversal going from the electron to the
hole side of the Dirac cone. This situation is different from the
counter-propagating modes in a quantum spin Hall insulator
(QSH) [10], where the mode conductance lacks the factor of 1

2
and where counter-propagating modes at an edge have opposite
spins and thus cannot scatter elastically into each other. See the
Supplemental Material [11] for a comparison of the quantum
Hall effect in different cases.

Here, we study the interaction between counter-propagating
surface states in a three-dimensional topological insulator
exploiting independent gate tuning of the upper and lower
topological surface states of a BiSbTeSe2 device. We observe
noninteger quantum Hall conductance values likely due to
the reduced scattering between the surface state modes by the
use of a large separation between top and bottom surfaces. The
noninteger (but rational) conductance values can be understood
from the voltage probes being in perfect equilibrium with both
the top and bottom edge modes. Modeling the conductance
data enables extraction of a value for the probability of
scattering between the top and bottom surface modes.

II. DEVICE FABRICATION AND LOW FIELD
CHARACTERIZATION

As a three-dimensional topological insulator, stoichiomet-
ric BiSbTeSe2 [4,13,14] is used because of its decent mobility
and highly insulating bulk. For growth and details of the
e-beam structuring, as well as realization of metal contacts
and top and bottom gates, see the Supplemental Material [11].
Two devices have been characterized at low magnetic fields
and both show similar behavior. One device was selected
for the high-magnetic field measurements. Figure 1 depicts
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FIG. 1. (a) Schematic drawing of a dual-gated quantum Hall device with either parallel propagation or counter-propagation in the edge
states of the topological bottom and top surfaces of a 3D topological insulator. In the case of parallel propagation (upper panel), the charge
carriers move in the same direction and the edges of the surfaces form equipotential lines (μ±) [12]. For counter-propagation (lower panel), the
electrons and holes come from different potential reservoirs (electrodes) and move in opposite directions. In this case, a nonzero probability
exists for backscattering between the top and bottom surfaces, given by (1 − τ ). (b) Two-dimensional gate map of the longitudinal resistance,
Rxx , as a function of the top and back gate voltages at zero magnetic field. The maximum resistance indicates the chemical potential lying
at the Dirac point. The color-coded line cuts showing Rxx versus gate voltages are also shown, as is an inset showing an optical microscopy
image of the device, in which the top gate and the BiSbTeSe2 flake are clearly visible. The black arrows indicate the sweep direction of the
measurements.

the schematic layout of the experiment as well as an optical
microscopy image of the device.

We measured the differential resistance for Rxx and Rxy at
zero magnetic field in a Hall-bar-shaped sample while sweep-
ing the top-gate and bottom-gate voltages independently. This
gave the data presented in Fig. 1(b). A single maximum
appears in the gate scan range of the map, at which the
Fermi levels of both top and bottom surface states are tuned
close to their respective Dirac points (DPs). Both top and
bottom surfaces were found to be electron doped initially,
meaning the DPs of both surfaces are positioned at negative
gate voltage. To the left and below the 2D figure, the profiles
of Rxx as a function of the top (back) gate voltage, Vtg

(Vbg), are given for cuts indicated with a blue (red) line. The
maximum of the profile as a function of the top-gate voltage
does not depend on the back-gate voltage and vice versa,
which means that the top and bottom gates only tune their
proximate surface states. This shows that the two surfaces are
decoupled, split as they are by the insulating bulk, consistent
with both previous observations of decoupled BSTS surfaces
[15] and with the significant thickness chosen for the flake
(240 nm).

The independent gate tuning capability of the Dirac cones
of the two topological surface states is also manifested in the
Hall effect data at low magnetic field. Figure 2(a) shows the
antisymmetrized Rxy Hall signal of top-gate sweeps recorded
for different magnetic fields. With the bottom surface slightly
electron doped (Vbg = −40 V), when the top gate crosses the
DP, the slope of Rxy(B) changes sign, which indicates that

we tune the top surface from being electron doped to hole
doped. The figure at the bottom shows a sharp change from
positive to negative value of Rxy as function of the top-gate
voltage.

We deduced the carrier density from the Rxy data using a
two-band model, in order to account for the top and bottom
surface conduction contributions (from the independent gating
of the two surfaces, the bulk contribution can be assumed to
be negligible). In general, there are four fitting parameters
(the top and bottom surface mobilities, μt and μb, and the
two carrier densities, Nt and Nb). However, in our case, we
benefit from the results of high field measurements (shown
and discussed in the Supplemental Material [11]) to estimate
the gate dependence of the carrier density of both surfaces
more accurately. This allows us to fix the carrier densities of
two surfaces and use the two mobilities as the only fitting
parameters. The results of the fitting, see Fig. 2(b), show that
we can tune both the top and bottom surfaces to have very low
carrier densities, and thus continuously tune the Fermi level
through the DP. When the Fermi level is very close to the DP,
rather than needing only two conductance channels, the fitting
requires a third contribution. Most likely, this is not due to
the side surfaces. In general, the etching steps in the Hall bar
fabrication procedure result in a very poor mobility for the
side surfaces. Moreover, the side surfaces are oriented parallel
to the applied field, meaning that they do not contribute to
the Rxy signal either. Most likely, the extra contribution arises
from spatial charge fluctuations [16] in the 2D surface states,
also observed for BiSbTeSe2 [17]. From the multiband fit, the
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FIG. 2. (a) Antisymmetrized Rxy Hall data as a function of top-gate voltage and magnetic field for a fixed back-gate voltage (Vbg = −40 V).
Hall resistance traces as a function of field for different top-gate voltages are shown to the right of the 2D map. The sign of the slope of Rxy

versus B changes when the top surface is tuned from electron doped (blue) to hole doped (red). At the threshold top-gate voltage (green), the
Rxy signal is almost flat due to a cancellation of the Rt

xy and Rb
xy signals. In the bottom figure, a plot of Rxy versus Vtg is plotted for a field

of 2.3 T, and shows a sharp change when Rxy crosses zero. (b) Carrier density, Nb, and mobility, μb, of the bottom surface as a function of
back-gate voltage as the result of a multiband fit to the Hall data. The charge carrier density changes sign as the Fermi level is tuned through
the Dirac point. Around the Dirac point (yellow shading), charge puddles give rise to a third conductance contribution. (c) Carrier density, Nt ,
and mobility, μt , of the top surface as a function of top-gate voltage.

carrier density of these charge puddles is estimated to be about
5 × 1015 m−2.

III. QUANTUM HALL MEASUREMENTS
AND DISCUSSION

At high magnetic field, the Landau levels start to appear
and form the conducting edge states. The two gates can be
used to tune the Fermi level between different Landau levels
(LLs). A gate map of unsymmetrized Gxy data at 15 T and
−15 T and 50 mK is shown in Figs. 3(a) and 3(b). We can
already see that the Gxy gate map is divided into several
quasirectangular areas. These plateaus correspond to different
filling factor combinations of νt = nt + 1

2 and νb = nb + 1
2 .

We indicate the different plateaus in brackets in a normalized
Gxy map after (anti)symmetrizing the (Rxy) Rxx data (see
Supplemental Material [11] for the details).

However, due to the moderate mobility (albeit state of the
art for Bi based topological insulators) the Landau levels are
not perfectly developed at a field of 15 T, and the formed
edge states stay dissipative. As a consequence, we always
observe nonzero (but strongly reduced) Rxx between two LLs,
as well as a reduced Gxy value, which complicates the results
and prevents a direct matching of experimental and theoretical
results. For this, an additional analysis is applied (as will be
explained further on).

To get a better understanding of the expected quantized
Hall conductance in this combined system of two surface
states, we modeled the system using the Landauer-Büttiker
formula (see Supplemental Material [11] for the modeling

details). We theoretically expect an unusual noninteger Hall
conductance in the regime for which the two surfaces are
populated by charge carriers of opposite sign [lower panel
of Fig. 1(a)], but equal helicity. Intuitively, when the coupling
between electrons and holes is strong, the counter-propagating
states counteract each other and will cancel when summing
the Hall conductances, but this picture only holds when the
counter-propagating filling factors are exactly opposite (e.g.,
νt = −νb = 1

2 ). In general, counter-propagating edge modes
start off from different current injection electrodes, and have,
therefore, different chemical potentials; see also Fig. 1(a). If
there is no interaction possible between the surface channels
through the bulk, the only way to get equilibrium is to
equalize the potential inside the metal electrodes. Using this
as a boundary condition, we theoretically expect noninteger
values for the Hall conductances in the counter-propagating
regime, even for perfect transmission of the edge channels. The
calculated and measured values are shown in Fig. 3(f). Cross-
sectional cuts of the data are shown in Figs. 3(d) and 3(e).

Due to the imperfect edge channels at these moderate
magnetic fields (i.e., μB � 1 not being fulfilled), the values
for the Hall conductance deviate from the expected values,
and Rxx does not go completely to zero. This effect becomes
most apparent for the top-gate dependence of Gxy at constant
bottom surface Landau level, as shown in Fig. 3(e), and is
strongest in the regimes for which the surfaces are populated
by charge carriers of opposite sign (we note that the mobility of
the holes is generally lower than the mobility of the electrons
in topological insulators, consistent with our observation in
Fig. 2). Indeed, impurities or defects on the side surfaces of a
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FIG. 3. (a),(b) Unsymmetrized Hall conductance Gxy as a function of top-gate voltage (Vtg) and back-gate voltage (Vbg) at +15 and −15 T.
(c) Gxy gate map after (anti)symmetrization analysis. The dashed lines indicate the borders between plateaus corresponding to different filling
factors, noted as (νt ,νb). The voltage indicators on the outside of the frame mark the positions of the cross sections in the subsequent panels.
(d) Back-gate voltage dependence of Gxy at the three values of νt shown in (f). The vertical, dashed lines indicate different νb. (e) Top-gate
voltage dependence of Gxy at the four different νb’s given in (f). The vertical, dashed lines now indicate different νt . (f) Expected values of

the Hall conductance for different filling factors in units of e2

h
. The measured values are shown between brackets. (g) Measured and calculated

values for the change in Gxy for successive bottom surface Landau levels, as indicated by the steps in (d) when going from one νb value to the
next. Error bars are extracted from the averaging carried out of the gating map data. Left: νt = − 1

2 (counter-propagating modes). Right: νt = 1
2

(parallel propagation). The calculated step sizes are shown both for perfect transmission (τ = 1) and for τ = 0.8. (h) Longitudinal resistance,
Rxx , at B = 15 T versus Vtg and Vbg . Blue solid lines indicate the borders of the Landau level plateaus. The hatched areas indicate regions with
counter-propagating modes.

topological insulator are predicted to lead to hybridization of
the edge states of the two surfaces [18].

However, the bottom surface shows better quantization
values (perhaps due to better protection during device pro-

cessing); hence we use Fig. 3(d) rather than 3(e) for the
subsequent analysis. Especially when we look at the change
in the Hall conductance at constant νt when going from one
νb to the other, a quantitative analysis can be made as regards
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the nature of the coupling between counter-propagating edge
modes. We plot both the calculated (red, green) and the
measured (blue) Hall conductance changes (δGxy) when
changing νb in Fig. 3(g). The procedure to obtain the averaged
experimental numbers from the full gating map is explained
in the Supplemental Material [11]. The step numbers 0, 1,
and 2 correspond, respectively, to νb = − 1

2 → 1
2 , 1

2 → 3
2 ,

and 3
2 → 5

2 . Note that all experimental values are lower than
theoretically expected, likely due to the nonvanishing shunting
conductance of the bulk states. Despite the overall lowering
factor, for counter-propagating modes a clearly nonmonotonic
change in the Hall conductance is experimentally observed
around step 1 for νt = − 1

2 , as predicted by the model. On the
other hand, the Hall conductance change stays almost constant
for parallel propagation, when νt = 1

2 , also in line with the
model.

This observation is different from previous reports on
topological insulators [4,5,7], where the total Hall con-
ductance remained integer valued, even in the case of
counter-propagating modes. We note that our devices have
a significantly larger separation between the surfaces and that
the scattering between counter-propagating modes is therefore
reduced. Possible scenarios for the nature of the interaction
between the edge modes involve either impurities or a
(small) side surface conduction [18]. We model the coupling
between counter-propagating modes with an effective mode
transmission probability, τ . Then, the probability of reflecting
into the mirrored, counter-propagating channel (both opposite
charge and propagation direction) is 1 − τ . When τ = 1, the
counter-propagating channels are only coupled through the
equilibration of the chemical potential of the edge modes
inside the voltage probe electrodes. However, when τ = 0, the
counter-propagating channels are fully coupled, and the Hall
conductance is found to be integer valued (see Supplemental
Material [11] for details). This is most likely the explanation of
the integer quantum Hall effect seen in thinner samples. The
nonmonotonic change in Hall conductance observed in our
case is consistent with a large value of τ [for comparison, also
the expected values for τ = 0.8 are shown in Fig. 3(e), which
resemble the experimentally observed relative step heights
well], as expected for thicker flakes.

Interestingly, the longitudinal resistance, Rxx , also behaves
differently for parallel propagation and counter-propagating
edge modes. For parallel propagation [areas without hatching
in Fig. 3(f)], Rxx would tend to zero if the edge modes were to
become increasingly ideal at higher magnetic field. However,
if the two topological surfaces have counter-propagating edge
states [hatched regions in Fig. 3(h)], Rxx becomes large.
We calculated Rxx using the Landauer-Büttiker formula (see
Supplemental Material [11]). For νt = ±1/2 and νb = ∓1/2,
we find ρxx = h

τe2 . If the channels are very transparent
(τ ≈ 1), Rxx should be approximately G−1

0 , which can be
understood from the equilibration of the chemical potential in
the voltage probe electrodes. This situation is also applicable
to observations in the HgTe/CdTe quantum spin Hall state,
where τ = 1 because of the opposite spin of the modes [10],
albeit with a factor of two difference because of the different

Berry phase. If τ � 1, the two counter-propagating channels
are strongly coupled, since the backscattering rate is high, so
Rxx is expected to be large. The gate map of Rxx at 15 T is
shown in Fig. 3(f). The filling factors for both surfaces are
indicated using the notation (νt ,νb). It can be seen that both
Rxx( 1

2 ,− 1
2 ) = 22.5 k� and Rxx(− 1

2 , 1
2 ) = 20.5 k� are close

to G−1
0 , again indicative of τ being close to 1. For the thinner

sample of Xu et al. [4], based on their measured value for Rxx ,
we estimate τ = 0.1, which is indeed an order of magnitude
smaller, indicating more proximate and thus more strongly
coupled edge channels, fully consistent with their observation
of an integer quantum Hall effect.

IV. CONCLUSION

In conclusion, the Fermi level has been controlled inde-
pendently for the upper and lower surface states of a 3D
topological insulator using a dual-gating configuration. The
developing quantum Hall states are observed at a magnetic
field of 15 T. Applying the Landauer-Büttiker formalism, we
simulate the system for both a parallel and counter-propagation
edge state configuration and we experimentally confirm a
nonmonotonic change in the Hall conductance for counter-
propagating states when compared to the integer quantum
Hall effect. Our data suggest that it is the interaction between
counter-propagating modes that results in the noninteger
quantum Hall effect. The interaction can be understood from
the equilibration of the chemical potential in the electrodes and
the scattering between the edge modes of the top and bottom
surfaces. Future experiments with higher mobility samples or
at higher magnetic fields will likely result in fully developed
quantum Hall edge states, by which the theory can be compared
to the data more directly.

Compared to the well studied electron-hole quantum Hall
bilayers in semiconducting 2D heterostructures (e.g., see
[19–21]), the topological surface states hold up the intriguing
prospect of showing fractional exchange statistics, when
combined with superconductivity, due to the helical nature of
the edge modes. Counter-propagating and spin-resolved edge
modes have also been realized in quantum spin Hall insulators
[10] and twisted bilayer graphene [22,23], but scattering
between counter-propagating edge modes, as reported here,
is only possible for 3D topological insulators, providing an
additional control parameter in quantum Hall experiments and
applications. The combination of edge mode interaction and
potential equilibration in the electrodes might also be a suitable
platform to investigate models for scattering in the fractional
quantum Hall effect [24] and independent tuning of quantum
Hall edge states by the magnetic proximity effect [25–27].
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