537 research outputs found

    Gas Discharge Lamps Are Volatile Memristors

    Get PDF
    Discharge lamps can be classified as high-pressure and low-pressure lamps, which operate under different scientific principles. They have exhibited the well-known fingerprints of memristors. This paper describes the mathematical models of both of high- and low-pressure discharge lamps based on their respective physical nature and behaviors, and then explains how these models can be unified into a generalized mathematical framework that confirms their memristor characteristics. Practical and theoretical results from high-pressure and low-pressure lamps are included to illustrate their 3 fingerprints of the memristor characteristics. The results indicate that gas discharge lamps are not ideal but volatile memristors.published_or_final_versio

    An Adsorption Chiller Driven by Thermoelectricity

    Get PDF

    THE INFLUENCE OF TASK-BASED LANGUAGE TEACHING AND AUDIO-LINGUAL TEACHING APPROACH ON MANDARIN LANGUAGE LEARNING OUTCOMES

    Get PDF
    The aim of this study is to look into the influence of Task-based Language Teaching (TBLT) and audio-lingual teaching approaches on Malaysia tertiary level non-native Mandarin learners’ learning outcomes in the teaching of Mandarin as a global language. A quasi-experimental study was carried out on 43 Universiti Malaysia Kelantan students, where they were divided into two groups. Group A contained 21 students, while Group B had 22 students. The two groups were studied to compare the influence of the two different teaching approaches: TBLT (Group A) and audio-lingual teaching approach (Group B). Willis’ (2006) Task-based Learning Framework was applied as the teaching framework in Group A (TBLT), while dialogue memorisation was applied in Group B (audio-lingual teaching approach). The results of the teaching approaches were analysed using simulated oral test, where language fluency, language accuracy and language pronunciation were the elements the researcher looked into. The results of the findings showed that Group A indicated a drop in the learning outcomes’ mean score in the first cycle of the post-treatment test, but the condition changed in the second cycle post-treatment test and delayed post-treatment test, where the learning outcomes of Group A (TBLT) outperformed the control group’s (audio-lingual teaching approach). The finding of the research provides suggestions towards teachers to apply communicative task between non-native learners and native speakers to improve learners’ learning outcomes. It also advises teachers to apply TBLT in a longer term rather than in a short term.&nbsp

    Gene silencing of <i>Sugar-dependent 1</i> (JcSDP1), encoding a patatin-domain triacylglycerol lipase, enhances seed oil accumulation in <i>Jatropha curcas</i>

    Get PDF
    BACKGROUND: Triacylglycerols (TAGs) are the most abundant form of storage oil in plants. They consist of three fatty acid chains (usually C16 or C18) covalently linked to glycerol. SDP1 is a specific lipase for the first step of TAG catabolism in Arabidopsis seeds. Arabidopsis mutants deficient in SDP1 accumulate high levels of oils, probably due to blockage in TAG degradation. We applied this knowledge from the model plant, Arabidopsis thaliana, to engineer increased seed oil content in the biodiesel plant Jatropha curcas using RNA interference (RNAi) technology. RESULTS: As Jatropha is a biodiesel crop, any significant increase in its seed oil content would be an important agronomic trait. Using A. thaliana as a model plant, we found that a deficiency of SDP1 led to higher TAG accumulation and a larger number of oil bodies in seeds compared with wild type (Columbia-0; Col-0). We cloned Jatropha JcSDP1, and verified its function by complementation of the Arabidopsis sdp1-5 mutant. Taking advantage of the observation with Arabidopsis, we used RNAi technology to generate JcSDP1 deficiency in transgenic Jatropha. We found that Jatropha JcSDP1-RNAi plants accumulated 13 to 30% higher total seed storage lipid, along with a 7% compensatory decrease in protein content, compared with control (CK; 35S:GFP) plants. Free fatty acid (FFA) content in seeds was reduced from 27% in control plants to 8.5% in JcSDP1-RNAi plants. CONCLUSION: Here, we showed that SDP1 deficiency enhances seed oil accumulation in Arabidopsis. Based on this result, we generated SDP1-deficient transgenic Jatropha plants using by RNAi technology with a native JcSDP1 promoter to silence endogenous JcSDP1 expression. Seeds of Jatropha JcSDP1-RNAi plants accumulated up to 30% higher total lipid and had reduced FFA content compared with control (CK; 35S:GFP) plants. Our strategy of improving an important agronomic trait of Jatropha can be extended to other oil crops to yield higher seed oil

    Increased Incidence of Lymphosarcoma in Long-Term Murine Survivors of Lethal Radiation: A Classification of Subtypes

    Get PDF
    poster abstractResidual bone marrow damage (RBMD) persists for years following exposure to radiation and is thought to be due to decreased self-renewal of hematopoietic stem cells (HSC). We previously examined RBMD in murine survivors of lethal radiation modeling a terrorist event [800cGy total-body irradiation (TBI)]. We reported severely deficient HSC potential up to 20mo post-TBI compared to non-TBI age-matched controls, evidenced by minimal engraftment skewed to myeloid cells. CBC and BM cellularity were decreased in TBI mice, most dramatically in old age (>16mo). The percentage of some hematopoietic progenitors was consistently increased in TBI mice (~1.4x higher than non-TBI) possibly due to an increased cell cycling rate compared to non-TBI cells. Of interest, we now report the occurrence of a thymic mass developing in 13-24% of TBI mice 2-19 months post-TBI, compared to <1% of non-TBI. We characterized the Lymphosarcoma into the following groups based on the St. Jude pathology subclassification: Diffuse Lymphosarcoma involving multiple organs, Thymic lymphoma (usually associated with thymic and around the heart), Lymphosarcoma (potentially starting in the spleen and peri-pancreatic lymph nodes (Ab=abdomen)), and follicular lymphoma seen as a diffuse proliferation of lymphocytes in the white pulp area in the spleen. Thymic lymphomas were the most common, followed by Lymphosarcoma (Ab), follicular lymphoma (restricted to white pulp area in the spleen) and diffuse Lymphosarcoma. Immunostain markers revealed the thymic lymphomas were from T-cell lineage and the abdominal Lymphosarcoma were mainly from B-cell lineage. A few mice had disease involving the bone marrow. Taken together, these data suggest that the increased cycling among primitive hematopoietic cells in survivors of lethal radiation may contribute to stem cell exhaustion and subsequent RBMD, as well as predispose survivors to hematopoietic neoplasias

    Survival efficacy of the PEGylated G-CSFs Maxy-G34 and neulasta in a mouse model of lethal H-ARS, and residual bone marrow damage in treated survivors

    Get PDF
    In an effort to expand the worldwide pool of available medical countermeasures (MCM) against radiation, the PEGylated G-CSF (PEG-G-CSF) molecules Neulasta and Maxy-G34, a novel PEG-G-CSF designed for increased half-life and enhanced activity compared to Neulasta, were examined in a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS), along with the lead MCM for licensure and stockpiling, G-CSF. Both PEG-G-CSFs were shown to retain significant survival efficacy when administered as a single dose 24 h post-exposure, compared to the 16 daily doses of G-CSF required for survival efficacy. Furthermore, 0.1 mg kg of either PEG-G-CSF affected survival of lethally-irradiated mice that was similar to a 10-fold higher dose. The one dose/low dose administration schedules are attractive attributes of radiation MCM given the logistical challenges of medical care in a mass casualty event. Maxy-G34-treated mice that survived H-ARS were examined for residual bone marrow damage (RBMD) up to 9 mo post-exposure. Despite differences in Sca-1 expression and cell cycle position in some hematopoietic progenitor phenotypes, Maxy-G34-treated mice exhibited the same degree of hematopoietic stem cell (HSC) insufficiency as vehicle-treated H-ARS survivors in competitive transplantation assays of 150 purified Sca-1+cKit+lin-CD150+cells. These data suggest that Maxy-G34, at the dose, schedule, and time frame examined, did not mitigate RBMD but significantly increased survival from H-ARS at one-tenth the dose previously tested, providing strong support for advanced development of Maxy-G34, as well as Neulasta, as MCM against radiation

    PEGylated G-CSF (BBT-015), GM-CSF (BBT-007), and IL-11 (BBT-059) analogs enhance survival and hematopoietic cell recovery in a mouse model of the hematopoietic syndrome of the acute radiation syndrome

    Get PDF
    Hematopoietic growth factors (HGF) are recommended therapy for high dose radiation exposure, but unfavorable administration schedules requiring early and repeat dosing limit the logistical ease with which they can be used. In this report, using a previously described murine model of H-ARS, survival efficacy and effect on hematopoietic recovery of unique PEGylated HGF were investigated. The PEGylated-HGFs possess longer half-lives and more potent hematopoietic properties than corresponding non-PEGylated-HGFs. C57BL/6 mice underwent single dose lethal irradiation (7.76-8.72 Gy, Cs, 0.62-1.02 Gy min) and were treated with various dosing regimens of 0.1, 0.3, and 1.0 mg kg of analogs of human PEG-G-CSF, murine PEG-GM-CSF, or human PEG-IL-11. Mice were administered one of the HGF analogs at 24-28 h post irradiation, and in some studies, additional doses given every other day (beginning with the 24-28 h dose) for a total of three or nine doses. Thirty-day (30 d) survival was significantly increased with only one dose of 0.3 mg kg of PEG-G-CSF and PEG-IL-11 or three doses of 0.3 mg kg of PEG-GM-CSF (p ≤ 0.006). Enhanced survival correlated with consistently and significantly enhanced WBC, NE, RBC, and PLT recovery for PEG-G- and PEG-GM-CSF, and enhanced RBC and PLT recovery for PEG-IL-11 (p ≤ 0.05). Longer administration schedules or higher doses did not provide a significant additional survival benefit over the shorter, lower dose, schedules. These data demonstrate the efficacy of BBT's PEG-HGF to provide significantly increased survival with fewer injections and lower drug doses, which may have significant economic and logistical value in the aftermath of a radiation event

    Lifelong residual bone marrow damage in murine survivors of the hematopoietic acute radiation syndrome (H-ARS): a compilation of studies comprising the Indiana University experience

    Get PDF
    Accurate analyses of the delayed effects of acute radiation exposure (DEARE) in survivors of the hematopoietic acute radiation syndrome (H-ARS) are hampered by low numbers of mice for examination due to high lethality from the acute syndrome, increased morbidity and mortality in survivors, high cost of husbandry for long-term studies, biological variability, and inconsistencies of models from different laboratories complicating meta-analyses. To address this, a compilation of 38 similar H-ARS studies conducted over a seven-year period in the authors’ laboratory, comprising more than 1,500 irradiated young adult C57BL/6 mice and almost 600 day-30 survivors, was assessed for hematopoietic DEARE at various times up to 30 months of age. Significant loss of long-term repopulating potential of phenotypically-defined primitive hematopoietic stem cells (HSC) was documented in H-ARS survivors, as well as significant decreases in all hematopoietic lineages in peripheral blood, prominent myeloid skew, significantly decreased bone marrow cellularity and numbers of lineage-negative Sca-1+ cKit+ CD150+ cells (KSLCD150+; the phenotype known to be enriched for HSC), and increased cycling of KSLCD150+ cells. Studies interrogating the phenotype of bone marrow cells capable of initiation of suspension cultures and engraftment in competitive transplantation assays documented the phenotype of HSC in H-ARS survivors to be the same as that in non-irradiated age-matched controls. This compilation study adds rigor and validity to our initial findings of persistent hematopoietic dysfunction in H-ARS survivors that arises at the level of the HSC and which affects all classes of hematopoietic cells for the life of the survivor

    The H-ARS Dose Response Relationship (DRR): Validation and Variables

    Get PDF
    Manipulations of lethally-irradiated animals, such as for administration of pharmaceuticals, blood sampling, or other laboratory procedures, have the potential to induce stress effects that may negatively affect morbidity and mortality. To investigate this in a murine model of the hematopoietic acute radiation syndrome, 20 individual survival efficacy studies were grouped based on the severity of the administration (Admn) schedules of their medical countermeasure (MCM) into Admn 1 (no injections), Admn 2 (1-3 injections), or Admn 3 (29 injections or 6-9 oral gavages). Radiation doses ranged from LD30/30 to LD95/30. Thirty-day survival of vehicle controls in each group was used to construct radiation dose lethality response relationship (DRR) probit plots, which were compared statistically to the original DRR from which all LDXX/30 for the studies were obtained. The slope of the Admn 3 probit was found to be significantly steeper (5.190) than that of the original DRR (2.842) or Admn 2 (2.009), which were not significantly different. The LD50/30 for Admn 3 (8.43 Gy) was less than that of the original DRR (8.53 Gy, p < 0.050), whereas the LD50/30 of other groups were similar. Kaplan-Meier survival curves showed significantly worse survival of Admn 3 mice compared to the three other groups (p = 0.007). Taken together, these results show that stressful administration schedules of MCM can negatively impact survival and that dosing regimens should be considered when constructing DRR to use in survival studies
    • …
    corecore