4,184 research outputs found

    Flowmeter for large-scale pipes

    Get PDF
    AbstractThis paper studied a new type of flowmeter, the bypass flowmeter. It is suitable for large-scale pipes. The principle of bypass flowmeter is studied by analyzing flowing in parallel pipes and carrying out experiments at a modified performance test system for centrifugal pumps. The study results showed that the flowrate ratio between the main pipe and the bypass pipe is determined by the geometric structures of pipes and the flowing states in the pipes. The flowrate ratio varies greatly when the Reynolds numbers are relatively lower both in the main pipe and the bypass pipe. The flowrate ratio keeps constant when the Reynolds number in the main pipe is larger than 120000. The head loss becomes smaller when the bypass pipe is connected to the main pipe. The percentage of head loss decrease is from 7.64% to 9.34%. The results indicate that bypass flowmeter is suitable for flowrate measuring in large scale pipes. It will not cause additional head loss to the flow

    Giα proteins exhibit functional differences in the activation of ERK1/2, Akt and mTORC1 by growth factors in normal and breast cancer cells

    Get PDF
    Background In a classic model, Giα proteins including Gi1α, Gi2α and Gi3α are important for transducing signals from Giα protein-coupled receptors (GiαPCRs) to their downstream cascades in response to hormones and neurotransmitters. Our previous study has suggested that Gi1α, Gi2α and Gi3α are also important for the activation of the PI3K/Akt/mTORC1 pathway by epidermal growth factor (EGF) and its family members. However, a genetic role of these Giα proteins in the activation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) by EGF is largely unknown. Further, it is not clear whether these Giα proteins are also engaged in the activation of both the Akt/mTORC1 and ERK1/2 pathways by other growth factor family members. Additionally, a role of these Giα proteins in breast cancer remains to be elucidated. Results We found that Gi1/3 deficient MEFs with the low expression level of Gi2α showed defective ERK1/2 activation by EGFs, IGF-1 and insulin, and Akt and mTORC1 activation by EGFs and FGFs. Gi1/2/3 knockdown breast cancer cells exhibited a similar defect in the activations and a defect in in vitro growth and invasion. The Giα proteins associated with RTKs, Gab1, FRS2 and Shp2 in breast cancer cells and their ablation impaired Gab1’s interactions with Shp2 in response to EGF and IGF-1, or with FRS2 and Grb2 in response to bFGF. Conclusions Giα proteins differentially regulate the activation of Akt, mTORC1 and ERK1/2 by different families of growth factors. Giα proteins are important for breast cancer cell growth and invasion.Fil: Wang, Zhanwei. University of Hawaii Cancer Center. Honolulu; Estados UnidosFil: Dela Cruz, Rica. University of Hawaii Cancer Center. Honolulu; Estados UnidosFil: Ji, Fang. Shanghai Jiao Tong University . Sahnghai; ChinaFil: Guo, Sheng. University of Hawaii Cancer Center. Honolulu; Estados Unidos. Shanghai Jiaotong University. Shangha; Estados UnidosFil: Zhang, Jianhua. Shanghai Jiaotong University. Shangha; Estados Unidos. University of Hawaii Cancer Center. Honolulu; Estados UnidosFil: Wang, Ying. David Geffen School of Medicine at UCLA. Los Angeles; Estados UnidosFil: Feng, Gen-Sheng. University of California at San Diego; Estados UnidosFil: Birnbaumer, Lutz. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. National Institutes of Health; Estados UnidosFil: Jiang, Meisheng. David Geffen School of Medicine at UCLA. Los Angeles; Estados UnidosFil: Chu, Wen Ming. University of Hawaii Cancer Center. Honolulu; Estados Unido

    Vectorial structure of a hard-edged-diffracted four-petal Gaussian beam in the far field

    Full text link
    Based on the vector angular spectrum method and the stationary phase method and the fact that a circular aperture function can be expanded into a finite sum of complex Gaussian functions, the analytical vectorial structure of a four-petal Gaussian beam (FPGB) diffracted by a circular aperture is derived in the far field. The energy flux distributions and the diffraction effect introduced by the aperture are studied and illustrated graphically. Moreover, the influence of the f-parameter and the truncation parameter on the nonparaxiality is demonstrated in detail. In addition, the analytical formulas obtained in this paper can degenerate into un-apertured case when the truncation parameter tends to infinity. This work is beneficial to strengthen the understanding of vectorial properties of the FPGB diffracted by a circular aperture

    Bryophyte diversity is related to vascular plant diversity and microhabitat under disturbance in karst caves

    Get PDF
    Plant diversity, habitat properties, and their relationships in karst caves remain poorly understood. We surveyed vascular plant and bryophyte diversities and measured the habitat characteristics in six karst caves in south China with different disturbance histories (one had been disturbed by poultry feeding, three had been disturbed by tourism, and two were undisturbed). The plant diversity differences among the six caves were analyzed using cluster analysis, and the relationships of plant diversity and microhabitat were assessed using canonical correspondence analysis. We found a total of 43 angiosperm species from 27 families, 20 lycophyte and fern species from 9 families, and 20 species of bryophytes from 13 families in the six caves. Habitat characteristics including light intensity, air relative humidity, air temperature, and soil properties varied among the caves. The plant diversity in karst caves was not rich, but the species composition was unique. The caves with high disturbance had the lowest species richness, numbers of individuals, and Shannon-Wiener diversity indices but the highest Simpson’s dominance indices. The caves with less disturbance had the highest numbers of species, numbers of individuals, and Shannon-Wiener diversity indices but the lowest Simpson’s dominance indices. The disturbed caves were often dominated by drought-tolerant, tenacious mosses (bryophytes), while the relatively undisturbed caves contained abundant liverworts (bryophytes), which were better adapted to humid environments. Plant diversity in karst caves was closely related to habitat heterogeneity, light and water status, and nutrient availability. Tourism and poultry farming were associated with the degradation of vegetation in some karst caves. Protecting and restoring bryophytes might facilitate the settlement, growth, and succession of vascular plants in karst caves. Bryophytes can be used as indicators of overall plant diversity and restoration status in karst caves

    Host-Guest Complexation of Amphiphilic Molecules at the Air-Water Interface Prevents Oxidation by Hydroxyl Radicals and Singlet Oxygen

    Get PDF
    The oxidation of antioxidants by oxidizers imposes great challenges to both living organisms and the food industry. Here we show that the host–guest complexation of the carefully designed, positively charged, amphiphilic guanidinocalix[5]arene pentadodecyl ether (GC5A‐12C) and negatively charged oleic acid (OA), a well‐known cell membrane antioxidant, prevents the oxidation of the complex monolayers at the air–water interface from two potent oxidizers hydroxyl radicals (OH) and singlet delta oxygen (SDO). OH is generated from the gas phase and attacks from the top of the monolayer, while SDO is generated inside the monolayer and attacks amphiphiles from a lateral direction. Field‐induced droplet ionization mass spectrometry results have demonstrated that the host–guest complexation achieves steric shielding and prevents both types of oxidation as a result of the tight and “sleeved in” physical arrangement, rather than the chemical reactivity, of the complexes

    Host-Guest Complexation of Amphiphilic Molecules at the Air-Water Interface Prevents Oxidation by Hydroxyl Radicals and Singlet Oxygen

    Get PDF
    The oxidation of antioxidants by oxidizers imposes great challenges to both living organisms and the food industry. Here we show that the host–guest complexation of the carefully designed, positively charged, amphiphilic guanidinocalix[5]arene pentadodecyl ether (GC5A‐12C) and negatively charged oleic acid (OA), a well‐known cell membrane antioxidant, prevents the oxidation of the complex monolayers at the air–water interface from two potent oxidizers hydroxyl radicals (OH) and singlet delta oxygen (SDO). OH is generated from the gas phase and attacks from the top of the monolayer, while SDO is generated inside the monolayer and attacks amphiphiles from a lateral direction. Field‐induced droplet ionization mass spectrometry results have demonstrated that the host–guest complexation achieves steric shielding and prevents both types of oxidation as a result of the tight and “sleeved in” physical arrangement, rather than the chemical reactivity, of the complexes

    A SWAP Gate for Spin Qubits in Silicon

    Full text link
    With one- and two-qubit gate fidelities approaching the fault-tolerance threshold for spin qubits in silicon, how to scale up the architecture and make large arrays of spin qubits become the more pressing challenges. In a scaled-up structure, qubit-to-qubit connectivity has crucial impact on gate counts of quantum error correction and general quantum algorithms. In our toolbox of quantum gates for spin qubits, SWAP gate is quite versatile: it can help solve the connectivity problem by realizing both short- and long-range spin state transfer, and act as a basic two-qubit gate, which can reduce quantum circuit depth when combined with other two-qubit gates. However, for spin qubits in silicon quantum dots, high fidelity SWAP gates have not been demonstrated due to the requirements of large circuit bandwidth and a highly adjustable ratio between the strength of the exchange coupling J and the Zeeman energy difference Delta E_z. Here we demonstrate a fast SWAP gate with a duration of ~25 ns based on quantum dots in isotopically enriched silicon, with a highly adjustable ratio between J and Delta E_z, for over two orders of magnitude in our device. We are also able to calibrate the single-qubit local phases during the SWAP gate by incorporating single-qubit gates in our circuit. By independently reading out the qubits, we probe the anti-correlations between the two spins, estimate the operation fidelity and analyze the dominant error sources for our SWAP gate. These results pave the way for high fidelity SWAP gates, and processes based on them, such as quantum communication on chip and quantum simulation by engineering the Heisenberg Hamiltonian in silicon.Comment: 25 pages, 5 figures

    Smart hydrogels with wide visible color tunability

    Get PDF
    Pigmentary coloration can produce viewing angle-independent uniform colors via light absorption by chromophores. However, due to the limited diversity in the changes of the molecular configuration of chromophores to undergo color change, the existing materials cannot produce a wide range of visible colors with tunable color saturation and transmittance. Herein, we propose a novel strategy to create materials with a wide visible color range and highly tunable color saturation and transmittance. We fabricated a hydrogel with poly (acrylamide-co-dopamine acrylamide) networks swollen with Fe3+-containing glycerol/water in which the covalently crosslinked polyacrylamide backbone with pendant catechols can ensure that the hydrogel maintains a very stable shape. Hydrogels containing adjustable catechol-Fe3+ coordination bonds with flexible light-interacting configuration changes can display a wide range of visible colors based on the complementary color principle. The catechol-Fe3+ complexes can dynamically switch between noncoordinated and mono-, bis- and tris-coordinated states to harvest light energy from a specific wavelength across the whole visible spectrum. Therefore, these hydrogels can be yellow, green, blue, and red, covering the three primary colors. Moreover, color saturation and transmittance can be flexibly manipulated by simply adjusting the Fe3+ content in the hydrogel networks. The versatility of these smart hydrogels has been demonstrated through diverse applications, including optical filters for color regulation and colorimetric sensors for detecting UV light and chemical vapors. This proposed smart hydrogel provides a universal color-switchable platform for the development of multifunctional optical systems such as optical filters, sensors, and detectors
    • 

    corecore