1,208 research outputs found

    Interatomic Fe-H potential for irradiation and embrittlement simulations

    Full text link
    The behavior of hydrogen in iron and iron alloys is of interest in many fields of physics and materials science. To enable large-scale molecular dynamics simulations of systems with Fe-H interactions, we develop, based on density-functional theory calculations, an interatomic Fe-H potential in the Tersoff-Brenner formalism. The obtained analytical potential is suitable for simulations of H in bulk Fe as well as for modeling small FeH molecules, and it can be directly combined with our previously constructed potential for the stainless steel Fe-Cr-C system. This will allow simulations of, e.g., hydrocarbon molecule chemistry on steel surfaces. In the current work, we apply the potential to simulating hydrogen-induced embrittlement in monocrystalline bulk Fe and in an Fe bicrystal with a grain boundary. In both cases, hydrogen is found to soften the material.Comment: 23 pages, 4 color figures; identical in content to the published articl

    Localization and Mobility Gap in Topological Anderson Insulator

    Get PDF
    It has been proposed that disorder may lead to a new type of topological insulator, called topological Anderson insulator (TAI). Here we examine the physical origin of this phenomenon. We calculate the topological invariants and density of states of disordered model in a super-cell of 2-dimensional HgTe/CdTe quantum well. The topologically non-trivial phase is triggered by a band touching as the disorder strength increases. The TAI is protected by a mobility gap, in contrast to the band gap in conventional quantum spin Hall systems. The mobility gap in the TAI consists of a cluster of non-trivial subgaps separated by almost flat and localized bands.Comment: 8 pages, 7 figure

    Molecular dynamics study of the fragmentation of silicon doped fullerenes

    Full text link
    Tight binding molecular dynamics simulations, with a non orthogonal basis set, are performed to study the fragmentation of carbon fullerenes doped with up to six silicon atoms. Both substitutional and adsorbed cases are considered. The fragmentation process is simulated starting from the equilibrium configuration in each case and imposing a high initial temperature to the atoms. Kinetic energy quickly converts into potential energy, so that the system oscillates for some picoseconds and eventually breaks up. The most probable first event for substituted fullerenes is the ejection of a C2 molecule, another very frequent event being that one Si atom goes to an adsorbed position. Adsorbed Si clusters tend to desorb as a whole when they have four or more atoms, while the smaller ones tend to dissociate and sometimes interchange positions with the C atoms. These results are compared with experimental information from mass abundance spectroscopy and the products of photofragmentation.Comment: Seven two-column pages, six postscript figures. To be published in Physical Review

    Helping Schools Select and Implement Empirically Supported Practices in Prevention

    Get PDF
    This poster was presented at the American Psychological Association Conference, Boston, MA, in August 2008.School districts are inundated with innovation. Ongoing developments in academic and social-emotional curriculum, combined with external pressures to improve student outcomes, create challenges for districts to make informed decisions about programs to implement in their schools. In particular, efforts to identify and implement best practices in mental health programming and services are complicated by constantly evolving initiatives, strategies, and delivery systems. Our poster presents a rationale and model for helping school districts select and implement best practices in prevention and mental health promotion programming

    Simulation of thermodynamic properties of magnetic transition metals from an efficient tight-binding model

    Full text link
    Atomic scale simulations at finite temperature are an ideal approach to study the thermodynamic properties of magnetic transition metals. However, the development of interatomic potentials explicitly taking into account magnetic variables is a delicate task. In this context, we present a tight-binding model for magnetic transition metals in the Stoner approximation. This potential is integrated into a Monte Carlo structural relaxations code where trials of atomic displacements as well as fluctuations of local magnetic moments are performed to determine the thermodynamic equilibrium state of the considered systems. As an example, the Curie temperature of cobalt is investigated while showing the important role of atomic relaxations. Furthermore, our model is generalized to other transition metals highlighting a local magnetic moment distribution that varies with the gradual filling of the d states. Consequently, the successful validation of the potential for different magnetic configurations indicates its great transferability makes it a good choice for atomistic simulations sampling a large configuration space
    corecore