34,942 research outputs found
Effects of thermal conduction in sonoluminescence
We show by numerical hydrodynamic calculations that there are two important effects of thermal conduction in sonoluminescence: (i) the bubble remains close to being isothermal during the expansion phase; and (ii) a cold, dense layer of air is formed at the bubble wall during the contraction phase. These conclusions are not sensitive to the particular equation of state used, although details of the dynamical evolution of the bubble are
Probing dipole-forbidden autoionizing states by isolated attosecond pulses
We propose a general technique to retrieve the information of
dipole-forbidden resonances in the autoionizing region. In the simulation, a
helium atom is pumped by an isolated attosecond pulse in the extreme
ultraviolet (EUV) combined with a few-femtosecond laser pulse. The excited wave
packet consists of the , , and states, including the background
continua, near the doubly excited state. The resultant electron
spectra with various laser intensities and time delays between the EUV and
laser pulses are obtained by a multilevel model and an ab initio time-dependent
Schr\"odinger equation calculation. By taking the ab initio calculation as a
"virtual measurement", the dipole-forbidden resonances are characterized by the
multilevel model. We found that in contrast to the common assumption, the
nonresonant coupling between the continua plays a significant role in the
time-delayed electron spectra, which shows the correlation effect between
photoelectrons before they leave the core. This technique takes the advantages
of ultrashort pulses uniquely and would be a timely test for the current
attosecond technology.Comment: 10 pages, 6 figure
Analysis of the effects of interpolation and enhancement of LANDSAT-1 Data on classification and area estimation accuracy
There are no author-identified significant results in this report
Retarded Green's Functions In Perturbed Spacetimes For Cosmology and Gravitational Physics
Electromagnetic and gravitational radiation do not propagate solely on the
null cone in a generic curved spacetime. They develop "tails," traveling at all
speeds equal to and less than unity. If sizeable, this off-the-null-cone effect
could mean objects at cosmological distances, such as supernovae, appear dimmer
than they really are. Their light curves may be distorted relative to their
flat spacetime counterparts. These in turn could affect how we infer the
properties and evolution of the universe or the objects it contains. Within the
gravitational context, the tail effect induces a self-force that causes a
compact object orbiting a massive black hole to deviate from an otherwise
geodesic path. This needs to be taken into account when modeling the
gravitational waves expected from such sources. Motivated by these
considerations, we develop perturbation theory for solving the massless scalar,
photon and graviton retarded Green's functions in perturbed spacetimes,
assuming these Green's functions are known in the background spacetime. In
particular, we elaborate on the theory in perturbed Minkowski spacetime in
significant detail; and apply our techniques to compute the retarded Green's
functions in the weak field limit of the Kerr spacetime to first order in the
black hole's mass and angular momentum. Our methods build on and generalizes
work appearing in the literature on this topic to date, and lays the foundation
for a thorough, first principles based, investigation of how light propagates
over cosmological distances, within a spatially flat inhomogeneous
Friedmann-Lema\^{i}tre-Robertson-Walker (FLRW) universe. This perturbative
scheme applied to the graviton Green's function, when pushed to higher orders,
may provide approximate analytic (or semi-analytic) results for the self-force
problem in the weak field limits of the Schwarzschild and Kerr black hole
geometries.Comment: 23 pages, 5 figures. Significant updates in v2: Scalar, photon and
graviton Green's functions calculated explicitly in Kerr black hole spacetime
up to first order in mass and angular momentum (Sec. V); Visser's van Vleck
determinant result shown to be equivalent to ours in Sec. II. v3: JWKB
discussion moved to introduction; to be published in PR
BMN operators with vector impurities, Z_2 symmetry and pp-waves
We calculate the coefficients of three-point functions of BMN operators with
two vector impurities. We find that these coefficients can be obtained from
those of the three-point functions of scalar BMN operators by interchanging the
coefficient for the symmetric-traceless representation with the coefficient for
the singlet. We conclude that the Z_2 symmetry of the pp-wave string theory is
not manifest at the level of field theory three-point correlators.Comment: 25 pages, 7 figures. v1: A reference and a footnote added; v2: New
contributions found, Z_2 symmetry lost in 3-point function
- …