2,821 research outputs found

    Coherent oscillations and giant edge magnetoresistance in singly connected topological insulators

    Get PDF
    A topological insulator has a pair of extended states at the edge in the bulk insulating regime. We study a geometry in which such edge states will manifest themselves in a qualitative manner through periodic oscillations in the magnetoconductance of a singly connected sample coupled to leads through narrow point contacts. Detailed calculations identify the parameters for which these oscillations are expected to be the strongest, and also show their robustness to disorder. Such oscillations can be used as a spectroscopic tool of the edge states. A large change in the device resistance at small B, termed giant edge magnetoresistance, can have potential for application. © 2009 The American Physical Society.published_or_final_versio

    Increased expression of cyclooxygenase-2 in first-degree relatives of gastric cancer patients

    Get PDF
    Aim: To study the expression of cyclooxygenase-2 (COX-2) in human gastric cancer tissues and their paired adjacent mucosa, as well as mucosa from gastric antrum and corpus of the first-degree relatives of the recruited cancer patients. Methods: The expression of COX-2 mRNA in 38 patients with gastric cancer and their 29 first-degree relatives and 18 healthy controls was assessed by the real time RT-PCR. The expression of COX-2 protein was determined by Western blot. Results: A marked increase in COX-2 mRNA expression was found in 20 of 37 (54%) cancerous tissues compared to their respective paired normal mucosa (P<0.001). Interestingly, increased COX-2 mRNA expression was also found in mucosa of the corpus (6/29) and antrum (13/29) of their first-degree relatives. Increased COX-2 mRNA expression was more frequently observed in the antrum biopsies from cancer patients than in the antrum biopsies from healthy controls (P<0.05). In addition, 3 of 23 (13%) patients with atrophic mucosa and 6 of 35 (17%) patients with intestinal metaplasia showed increased COX-2 mRNA expression. Furthermore, COX-2 expression increased in H pylori-positive tissues, especially in antrum mucosa. Conclusion: Increased COX-2 expression is involved in gastric carcinogenesis, and may be necessary for maintenance of the malignant phenotype and contribute to Helicobacter pylori-associated malignant transformation. © 2005 The WJG Press and Elsevier Inc. All rights reserved.published_or_final_versio

    Microwave enhanced ion-cut silicon layer transfer

    Get PDF
    Microwave heating has been used to decrease the time required for exfoliation of thin single-crystalline silicon layers onto insulator substrates using ion-cut processing. Samples exfoliated in a 2.45 GHz, 1300 W cavity applicator microwave system saw a decrease in incubation times as compared to conventional anneal processes. Rutherford backscattering spectrometry, cross sectional scanning electron microscopy, cross sectional transmission electron microscopy, and selective aperture electron diffraction were used to determine the transferred layer thickness and crystalline quality. The surface quality was determined by atomic force microscopy. Hall measurements were used to determine electrical properties as a function of radiation repair anneal times. Results of physical and electrical characterizations demonstrate that the end products of microwave enhanced ion-cut processing do not appreciably differ from those using more traditional means of exfoliation. © 2007 American Institute of Physics

    Plasma hydrogenation of strained Si/SiGe/Si heterostructure for layer transfer without ion implantation

    Get PDF
    We have developed an innovative approach without the use of ion implantation to transfer a high-quality thin Si layer for the fabrication of silicon-on-insulator wafers. The technique uses a buried strained SiGe layer, a few nanometers in thickness, to provide H trapping centers. In conjunction with H plasma hydrogenation, lift-off of the top Si layer can be realized with cleavage occurring at the depth of the strained SiGe layer. This technique avoids irradiation damage within the top Si layer that typically results from ion implantation used to create H trapping regions in the conventional ion-cut method. We explain the strain-facilitated layer transfer as being due to preferential vacancy aggregation within the strained layer and subsequent trapping of hydrogen, which lead to cracking in a well controlled manner. © 2005 American Institute of Physics

    Quark--anti-quark potential in N=4 SYM

    Get PDF
    We construct a closed system of equations describing the quark--anti-quark potential at any coupling in planar N=4 supersymmetric Yang-Mills theory. It is based on the Quantum Spectral Curve method supplemented with a novel type of asymptotics. We present a high precision numerical solution reproducing the classical and one-loop string predictions very accurately. We also analytically compute the first 7 nontrivial orders of the weak coupling expansion. Moreover, we study analytically the generalized quark--anti-quark potential in the limit of large imaginary twist to all orders in perturbation theory. We demonstrate how the QSC reduces in this case to a one-dimensional Schrodinger equation. In the process we establish a link between the Q-functions and the solution of the Bethe-Salpeter equation.Comment: 31 pages, 1 figure; v2: minor correcton

    Generalized quark-antiquark potential at weak and strong coupling

    Get PDF
    We study a two-parameter family of Wilson loop operators in N=4 supersymmetric Yang-Mills theory which interpolates smoothly between the 1/2 BPS line or circle and a pair of antiparallel lines. These observables capture a natural generalization of the quark-antiquark potential. We calculate these loops on the gauge theory side to second order in perturbation theory and in a semiclassical expansion in string theory to one-loop order. The resulting determinants are given in integral form and can be evaluated numerically for general values of the parameters or analytically in a systematic expansion around the 1/2 BPS configuration. We comment about the feasibility of deriving all-loop results for these Wilson loops.Comment: 43 pages: 15 comprising the main text and 25 for detailed appendice

    UNCLES: Method for the identification of genes differentially consistently co-expressed in a specific subset of datasets

    Get PDF
    Background: Collective analysis of the increasingly emerging gene expression datasets are required. The recently proposed binarisation of consensus partition matrices (Bi-CoPaM) method can combine clustering results from multiple datasets to identify the subsets of genes which are consistently co-expressed in all of the provided datasets in a tuneable manner. However, results validation and parameter setting are issues that complicate the design of such methods. Moreover, although it is a common practice to test methods by application to synthetic datasets, the mathematical models used to synthesise such datasets are usually based on approximations which may not always be sufficiently representative of real datasets. Results: Here, we propose an unsupervised method for the unification of clustering results from multiple datasets using external specifications (UNCLES). This method has the ability to identify the subsets of genes consistently co-expressed in a subset of datasets while being poorly co-expressed in another subset of datasets, and to identify the subsets of genes consistently co-expressed in all given datasets. We also propose the M-N scatter plots validation technique and adopt it to set the parameters of UNCLES, such as the number of clusters, automatically. Additionally, we propose an approach for the synthesis of gene expression datasets using real data profiles in a way which combines the ground-truth-knowledge of synthetic data and the realistic expression values of real data, and therefore overcomes the problem of faithfulness of synthetic expression data modelling. By application to those datasets, we validate UNCLES while comparing it with other conventional clustering methods, and of particular relevance, biclustering methods. We further validate UNCLES by application to a set of 14 real genome-wide yeast datasets as it produces focused clusters that conform well to known biological facts. Furthermore, in-silico-based hypotheses regarding the function of a few previously unknown genes in those focused clusters are drawn. Conclusions: The UNCLES method, the M-N scatter plots technique, and the expression data synthesis approach will have wide application for the comprehensive analysis of genomic and other sources of multiple complex biological datasets. Moreover, the derived in-silico-based biological hypotheses represent subjects for future functional studies.The National Institute for Health Research (NIHR) under its Programme Grants for Applied Research Programme (Grant Reference Number RP-PG-0310-1004)

    Quark-antiquark potential in AdS at one loop

    Get PDF
    We derive an exact analytical expression for the one-loop partition function of a string in AdS_5xS^5 background with world-surface ending on two anti-parallel lines. All quantum fluctuations are shown to be governed by integrable, single-gap Lame' operators. The first strong coupling correction to the quark-antiquark potential, as defined in N=4 SYM, is derived as the sum of known mathematical constants and a one-dimensional integral representation. Its full numerical value can be given with arbitrary precision and confirms a previous result.Comment: 16 pages. Typos corrected, minor change

    Paradoxical roles of antioxidant enzymes:Basic mechanisms and health implications

    Get PDF
    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate “paradoxical” outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of “antioxidant” nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that “paradoxical” roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways

    Phosphorylated c-Src in the nucleus is associated with improved patient outcome in ER-positive breast cancer

    Get PDF
    Elevated c-Src protein expression has been shown in breast cancer and &lt;i&gt;in vitro&lt;/i&gt; evidence suggests a role in endocrine resistance. To investigate whether c-Src is involved in endocrine resistance, we examined the expression of both total and activated c-Src in human breast cancer specimens from a cohort of oestrogen receptor (ER)-positive tamoxifen-treated breast cancer patients. Tissue microarray technology was employed to analyse 262 tumour specimens taken before tamoxifen treatment. Immunohistochemistry using total c-Src and activated c-Src antibodies was performed. Kaplan–Meier survival curves were constructed and log-rank test were performed. High level of nuclear activated Src was significantly associated with improved overall survival (&lt;i&gt;P&lt;/i&gt;=0.047) and lower recurrence rates on tamoxifen (&lt;i&gt;P&lt;/i&gt;=0.02). Improved patient outcome was only seen with activated Src in the nucleus. Nuclear activated Src expression was significantly associated with node-negative disease and a lower NPI (&lt;i&gt;P&lt;/i&gt;&#60;0.05). On subgroup analysis, only ER-positive/progesterone receptor (PgR)-positive tumours were associated with improved survival (&lt;i&gt;P&lt;/i&gt;=0.004). This shows that c-Src activity is increased in breast cancer and that activated Src within the nucleus of ER-positive tumours predicts an improved outcome. In ER/PgR-positive disease, activated Src kinase does not appear to be involved in &lt;i&gt;de novo&lt;/i&gt; endocrine resistance. Further study is required in ER-negative breast cancer as this may represent a cohort in which it is associated with poor outcome
    • 

    corecore