7 research outputs found

    Long-distance continuous-variable quantum key distribution over 202.81 km fiber

    Get PDF
    Quantum key distribution (QKD) provides secure keys resistant to code-breaking quantum computers. The continuous-variable version of QKD offers the advantages of higher secret key rates in metropolitan areas, as well as the use of standard telecom components that can operate at room temperature. However, the transmission distance of these systems (compared with discrete-variable systems) are currently limited and considered unsuitable for long-distance distribution. Herein, we report the experimental results of long distance continuous-variable QKD over 202.81 km of ultralow-loss optical fiber by suitably controlling the excess noise and employing highly-efficient reconciliation procedures. This record-breaking implementation of the continuous-variable QKD doubles the previous distance record and shows the road for long-distance and large-scale secure QKD using room-temperature standard telecom components

    Mulberry Leaf Dietary Supplementation Can Improve the Lipo-Nutritional Quality of Pork and Regulate Gut Microbiota in Pigs: A Comprehensive Multi-Omics Analysis

    No full text
    Mulberry leaves, a common traditional Chinese medicine, represent a potential nutritional strategy to improve the fat profile, also known as the lipo-nutrition, of pork. However, the effects of mulberry leaves on pork lipo-nutrition and the microorganisms and metabolites in the porcine gut remain unclear. In this study, multi-omics analysis was employed in a Yuxi black pig animal model to explore the possible regulatory mechanism of mulberry leaves on pork quality. Sixty Yuxi black pigs were divided into two groups: the control group (n = 15) was fed a standard diet, and the experimental group (n = 45) was fed a diet supplemented with 8% mulberry leaves. Experiments were performed in three replicates (n = 15 per replicate); the two diets were ensured to be nutritionally balanced, and the feeding period was 120 days. The results showed that pigs receiving the diet supplemented with mulberry leaves had significantly reduced backfat thickness (p p Muribaculaceae_norank, Prevotellaceae_NK3B31_group, and Limosilactobacillus. Simultaneously, the relative levels of L-tyrosine-ethyl ester, oleic acid methyl ester, 21-deoxycortisol, N-acetyldihydrosphingosine, and mulberrin were increased. Furthermore, we found that mulberry leaf supplementation significantly increased the mRNA expression of lipoprotein lipase, fatty acid-binding protein 4, and peroxisome proliferators-activated receptor γ in muscle (p p p p p < 0.01). Collectively, this omic profile is consistent with an increased ratio of IMF to backfat in the pig model
    corecore