367 research outputs found

    The Inhalation Characteristics of Patients When They Use Different Dry Powder Inhalers

    Get PDF
    Background: The characteristics of each inhalation maneuver when patients use dry powder inhalers (DPIs) are important, because they control the quality of the emitted dose. Methods: We have measured the inhalation profiles of asthmatic children [CHILD; n=16, mean forced expiratory volume in 1 sec (FEV1) 79% predicted], asthmatic adults (ADULT; n=53, mean predicted FEV1 72%), and chronic obstructive pulmonary disease (COPD; n=29, mean predicted FEV1 42%) patients when they inhaled through an Aerolizer, Diskus, Turbuhaler, and Easyhaler using their “real-life” DPI inhalation technique. These are low-, medium-, medium/high-, and high-resistance DPIs, respectively. The inhalation flow against time was recorded to provide the peak inhalation flow (PIF; in L/min), the maximum pressure change (ΔP; in kPa), acceleration rates (ACCEL; in kPa/sec), time to maximum inhalation, the length of each inhalation (in sec), and the inhalation volume (IV; in liters) of each inhalation maneuver. Results: PIF, ΔP, and ACCEL values were consistent with the order of the inhaler's resistance. For each device, the inhalation characteristics were in the order ADULT>COPD>CHILD for PIF, ΔP, and ACCEL (p4 L and ΔP >4 kPa. Conclusion: The large variability of these inhalation characteristics and their range highlights that if inhalation profiles were used with compendial in vitro dose emission measurements, then the results would provide useful information about the dose patients inhale during routine use. The inhalation characteristics highlight that adults with asthma have greater inspiratory capacity than patients with COPD, whereas children with asthma have the lowest. The significance of the inhaled volume to empty doses from each device requires investigation

    Inhalation characteristics of asthma patients, COPD patients and healthy volunteers with the SpiromaxÂź and TurbuhalerÂź devices: a randomised, cross-over study.

    Get PDF
    BACKGROUND: Spiromax¼ is a novel dry-powder inhaler containing formulations of budesonide plus formoterol (BF). The device is intended to provide dose equivalence with enhanced user-friendliness compared to BF Turbuhaler¼ in asthma and chronic obstructive pulmonary disease (COPD). The present study was performed to compare inhalation parameters with empty versions of the two devices, and to investigate the effects of enhanced training designed to encourage faster inhalation. METHODS: This randomised, open-label, cross-over study included children with asthma (n = 23), adolescents with asthma (n = 27), adults with asthma (n = 50), adults with COPD (n = 50) and healthy adult volunteers (n = 50). Inhalation manoeuvres were recorded with each device after training with the patient information leaflet (PIL) and after enhanced training using an In-Check Dial device. RESULTS: After PIL training, peak inspiratory flow (PIF), maximum change in pressure (∆P) and the inhalation volume (IV) were significantly higher with Spiromax than with the Turbuhaler device (p values were at least <0.05 in all patient groups). After enhanced training, numerically or significantly higher values for PIF, ∆P, IV and acceleration remained with Spiromax versus Turbuhaler, except for ∆P in COPD patients. After PIL training, one adult asthma patient and one COPD patient inhaled <30 L/min through the Spiromax compared to one adult asthma patient and five COPD patients with the Turbuhaler. All patients achieved PIF values of at least 30 L/min after enhanced training. CONCLUSIONS: The two inhalers have similar resistance so inhalation flows and pressure changes would be expected to be similar. The higher flow-related values noted for Spiromax versus Turbuhaler after PIL training suggest that Spiromax might have human factor advantages in real-world use. After enhanced training, the flow-related differences between devices persisted; increased flow rates were achieved with both devices, and all patients achieved the minimal flow required for adequate drug delivery. Enhanced training could be useful, especially in COPD patients

    Concept review of dry powder inhalers : correct interpretation of published data

    Get PDF
    Peer reviewedPublisher PD

    Use of low-dose oral theophylline as an adjunct to inhaled corticosteroids in preventing exacerbations of chronic obstructive pulmonary disease: study protocol for a randomised controlled trial.

    Get PDF
    BACKGROUND: Chronic obstructive pulmonary disease (COPD) is associated with high morbidity, mortality, and health-care costs. An incomplete response to the anti-inflammatory effects of inhaled corticosteroids is present in COPD. Preclinical work indicates that 'low dose' theophylline improves steroid responsiveness. The Theophylline With Inhaled Corticosteroids (TWICS) trial investigates whether the addition of 'low dose' theophylline to inhaled corticosteroids has clinical and cost-effective benefits in COPD. METHOD/DESIGN: TWICS is a randomised double-blind placebo-controlled trial conducted in primary and secondary care sites in the UK. The inclusion criteria are the following: an established predominant respiratory diagnosis of COPD (post-bronchodilator forced expiratory volume in first second/forced vital capacity [FEV1/FVC] of less than 0.7), age of at least 40 years, smoking history of at least 10 pack-years, current inhaled corticosteroid use, and history of at least two exacerbations requiring treatment with antibiotics or oral corticosteroids in the previous year. A computerised randomisation system will stratify 1424 participants by region and recruitment setting (primary and secondary) and then randomly assign with equal probability to intervention or control arms. Participants will receive either 'low dose' theophylline (Uniphyllin MR 200 mg tablets) or placebo for 52 weeks. Dosing is based on pharmacokinetic modelling to achieve a steady-state serum theophylline of 1-5 mg/l. A dose of theophylline MR 200 mg once daily (or placebo once daily) will be taken by participants who do not smoke or participants who smoke but have an ideal body weight (IBW) of not more than 60 kg. A dose of theophylline MR 200 mg twice daily (or placebo twice daily) will be taken by participants who smoke and have an IBW of more than 60 kg. Participants will be reviewed at recruitment and after 6 and 12 months. The primary outcome is the total number of participant-reported COPD exacerbations requiring oral corticosteroids or antibiotics during the 52-week treatment period. DISCUSSION: The demonstration that 'low dose' theophylline increases the efficacy of inhaled corticosteroids in COPD by reducing the incidence of exacerbations is relevant not only to patients and clinicians but also to health-care providers, both in the UK and globally. TRIAL REGISTRATION: Current Controlled Trials ISRCTN27066620 was registered on Sept. 19, 2013, and the first subject was randomly assigned on Feb. 6, 2014

    The economic burden of asthma and chronic obstructive pulmonary disease and the impact of poor inhalation technique with commonly prescribed dry powder inhalers in three European countries

    Get PDF
    Contains fulltext : 171713.pdf (publisher's version ) (Open Access)BACKGROUND: Asthma and chronic obstructive pulmonary disease (COPD) are common chronic inflammatory respiratory diseases, which impose a substantial burden on healthcare systems and society. Fixed-dose combinations (FDCs) of inhaled corticosteroids (ICS) and long-acting beta2 agonists (LABA), often administered using dry powder inhalers (DPIs), are frequently prescribed to control persistent asthma and COPD. Use of DPIs has been associated with poor inhalation technique, which can lead to increased healthcare resource use and costs. METHODS: A model was developed to estimate the healthcare resource use and costs associated with asthma and COPD management in people using commonly prescribed DPIs (budesonide + formoterol Turbuhaler((R)) or fluticasone + salmeterol Accuhaler((R))) over 1 year in Spain, Sweden and the United Kingdom (UK). The model considered direct costs (inhaler acquisition costs and scheduled and unscheduled healthcare costs), indirect costs (productive days lost), and estimated the contribution of poor inhalation technique to the burden of illness. RESULTS: The direct cost burden of managing asthma and COPD for people using budesonide + formoterol Turbuhaler((R)) or fluticasone + salmeterol Accuhaler((R)) in 2015 was estimated at euro813 million, euro560 million, and euro774 million for Spain, Sweden and the UK, respectively. Poor inhalation technique comprised 2.2-7.7 % of direct costs, totalling euro105 million across the three countries. When lost productivity costs were included, total expenditure increased to euro1.4 billion, euro1.7 billion and euro3.3 billion in Spain, Sweden and the UK, respectively, with euro782 million attributable to poor inhalation technique across the three countries. Sensitivity analyses showed that the model results were most sensitive to changes in the proportion of patients prescribed ICS and LABA FDCs, and least sensitive to differences in the number of antimicrobials and oral corticosteroids prescribed. CONCLUSIONS: The cost of managing asthma and COPD using commonly prescribed DPIs is considerable. A substantial, and avoidable, contributor to this burden is poor inhalation technique. Measures that can improve inhalation technique with current DPIs, such as easier-to-use inhalers or better patient training, could offer benefits to patients and healthcare providers through improving disease outcomes and lowering costs
    • 

    corecore