88 research outputs found
Data Mining the SDSS SkyServer Database
An earlier paper (Szalay et. al. "Designing and Mining MultiTerabyte
Astronomy Archives: The Sloan Digital Sky Survey," ACM SIGMOD 2000) described
the Sloan Digital Sky Survey's (SDSS) data management needs by defining twenty
database queries and twelve data visualization tasks that a good data
management system should support. We built a database and interfaces to support
both the query load and also a website for ad-hoc access. This paper reports on
the database design, describes the data loading pipeline, and reports on the
query implementation and performance. The queries typically translated to a
single SQL statement. Most queries run in less than 20 seconds, allowing
scientists to interactively explore the database. This paper is an in-depth
tour of those queries. Readers should first have studied the companion overview
paper Szalay et. al. "The SDSS SkyServer, Public Access to the Sloan Digital
Sky Server Data" ACM SIGMOND 2002.Comment: 40 pages, Original source is at
http://research.microsoft.com/~gray/Papers/MSR_TR_O2_01_20_queries.do
Tracing the Filamentary Structure of the Galaxy Distribution at z~0.8
We study filamentary structure in the galaxy distribution at z ~ 0.8 using
data from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Redshift Survey
and its evolution to z ~ 0.1 using data from the Sloan Digital Sky Survey
(SDSS). We trace individual filaments for both surveys using the Smoothed
Hessian Major Axis Filament Finder, an algorithm which employs the Hessian
matrix of the galaxy density field to trace the filamentary structures in the
distribution of galaxies. We extract 33 subsamples from the SDSS data with a
geometry similar to that of DEEP2. We find that the filament length
distribution has not significantly changed since z ~ 0.8, as predicted in a
previous study using a \LamdaCDM cosmological N-body simulation. However, the
filament width distribution, which is sensitive to the non-linear growth of
structure, broadens and shifts to smaller widths for smoothing length scales of
5-10 Mpc/h from z ~ 0.8 to z ~ 0.1, in accord with N-body simulations.Comment: 10 pages, 8 figures, accepted for the publication in MNRA
KL Estimation of the Power Spectrum Parameters from the Angular Distribution of Galaxies in Early SDSS Data
We present measurements of parameters of the 3-dimensional power spectrum of
galaxy clustering from 222 square degrees of early imaging data in the Sloan
Digital Sky Survey. The projected galaxy distribution on the sky is expanded
over a set of Karhunen-Loeve eigenfunctions, which optimize the signal-to-noise
ratio in our analysis. A maximum likelihood analysis is used to estimate
parameters that set the shape and amplitude of the 3-dimensional power
spectrum. Our best estimates are Gamma=0.188 +/- 0.04 and sigma_8L = 0.915 +/-
0.06 (statistical errors only), for a flat Universe with a cosmological
constant. We demonstrate that our measurements contain signal from scales at or
beyond the peak of the 3D power spectrum. We discuss how the results scale with
systematic uncertainties, like the radial selection function. We find that the
central values satisfy the analytically estimated scaling relation. We have
also explored the effects of evolutionary corrections, various truncations of
the KL basis, seeing, sample size and limiting magnitude. We find that the
impact of most of these uncertainties stay within the 2-sigma uncertainties of
our fiducial result.Comment: Fig 1 postscript problem correcte
The Sloan Digital Sky Survey Quasar Lens Search. IV. Statistical Lens Sample from the Fifth Data Release
We present the second report of our systematic search for strongly lensed
quasars from the data of the Sloan Digital Sky Survey (SDSS). From extensive
follow-up observations of 136 candidate objects, we find 36 lenses in the full
sample of 77,429 spectroscopically confirmed quasars in the SDSS Data Release
5. We then define a complete sample of 19 lenses, including 11 from our
previous search in the SDSS Data Release 3, from the sample of 36,287 quasars
with i<19.1 in the redshift range 0.6<z<2.2, where we require the lenses to
have image separations of 1"<\theta<20" and i-band magnitude differences
between the two images smaller than 1.25 mag. Among the 19 lensed quasars, 3
have quadruple-image configurations, while the remaining 16 show double images.
This lens sample constrains the cosmological constant to be
\Omega_\Lambda=0.84^{+0.06}_{-0.08}(stat.)^{+0.09}_{-0.07}(syst.) assuming a
flat universe, which is in good agreement with other cosmological observations.
We also report the discoveries of 7 binary quasars with separations ranging
from 1.1" to 16.6", which are identified in the course of our lens survey. This
study concludes the construction of our statistical lens sample in the full
SDSS-I data set.Comment: 37 pages, 2 figures and 5 tables, accepted to A
The Angular Correlation Function of Galaxies from Early SDSS Data
The Sloan Digital Sky Survey is one of the first multicolor photometric and
spectroscopic surveys designed to measure the statistical properties of
galaxies within the local Universe. In this Letter we present some of the
initial results on the angular 2-point correlation function measured from the
early SDSS galaxy data. The form of the correlation function, over the
magnitude interval 18<r*<22, is shown to be consistent with results from
existing wide-field, photographic-based surveys and narrower CCD galaxy
surveys. On scales between 1 arcminute and 1 degree the correlation function is
well described by a power-law with an exponent of ~ -0.7. The amplitude of the
correlation function, within this angular interval, decreases with fainter
magnitudes in good agreement with analyses from existing galaxy surveys. There
is a characteristic break in the correlation function on scales of
approximately 1-2 degrees. On small scales, < 1', the SDSS correlation function
does not appear to be consistent with the power-law form fitted to the 1'<
theta <0.5 deg data. With a data set that is less than 2% of the full SDSS
survey area, we have obtained high precision measurements of the power-law
angular correlation function on angular scales 1' < theta < 1 deg, which are
robust to systematic uncertainties. Because of the limited area and the highly
correlated nature of the error covariance matrix, these initial results do not
yet provide a definitive characterization of departures from the power-law form
at smaller and larger angles. In the near future, however, the area of the SDSS
imaging survey will be sufficient to allow detailed analysis of the small and
large scale regimes, measurements of higher-order correlations, and studies of
angular clustering as a function of redshift and galaxy type
The First Hour of Extra-galactic Data of the Sloan Digital Sky Survey Spectroscopic Commissioning: The Coma Cluster
On 26 May 1999, one of the Sloan Digital Sky Survey (SDSS) fiber-fed
spectrographs saw astronomical first light. This was followed by the first
spectroscopic commissioning run during the dark period of June 1999. We present
here the first hour of extra-galactic spectroscopy taken during these early
commissioning stages: an observation of the Coma cluster of galaxies. Our data
samples the Southern part of this cluster, out to a radius of 1.5degrees and
thus fully covers the NGC 4839 group. We outline in this paper the main
characteristics of the SDSS spectroscopic systems and provide redshifts and
spectral classifications for 196 Coma galaxies, of which 45 redshifts are new.
For the 151 galaxies in common with the literature, we find excellent agreement
between our redshift determinations and the published values. As part of our
analysis, we have investigated four different spectral classification
algorithms: spectral line strengths, a principal component decomposition, a
wavelet analysis and the fitting of spectral synthesis models to the data. We
find that a significant fraction (25%) of our observed Coma galaxies show signs
of recent star-formation activity and that the velocity dispersion of these
active galaxies (emission-line and post-starburst galaxies) is 30% larger than
the absorption-line galaxies. We also find no active galaxies within the
central (projected) 200 h-1 Kpc of the cluster. The spatial distribution of our
Coma active galaxies is consistent with that found at higher redshift for the
CNOC1 cluster survey. Beyond the core region, the fraction of bright active
galaxies appears to rise slowly out to the virial radius and are randomly
distributed within the cluster with no apparent correlation with the potential
merger of the NGC 4839 group. [ABRIDGED]Comment: Accepted in AJ, 65 pages, 20 figures, 5 table
Colors of 2625 Quasars at 0<z<5 Measured in the Sloan Digital Sky Survey Photometric System
We present an empirical investigation of the colors of quasars in the Sloan
Digital Sky Survey (SDSS) photometric system. The sample studied includes 2625
quasars with SDSS photometry. The quasars are distributed in a 2.5 degree wide
stripe centered on the Celestial Equator covering square degrees.
Positions and SDSS magnitudes are given for the 898 quasars known prior to SDSS
spectroscopic commissioning. New SDSS quasars represent an increase of over
200% in the number of known quasars in this area of the sky. The ensemble
average of the observed colors of quasars in the SDSS passbands are well
represented by a power-law continuum with (). However, the contributions of the bump
and other strong emission lines have a significant effect upon the colors. The
color-redshift relation exhibits considerable structure, which may be of use in
determining photometric redshifts for quasars. The range of colors can be
accounted for by a range in the optical spectral index with a distribution
(95% confidence), but there is a red tail in the
distribution. This tail may be a sign of internal reddening. Finally, we show
that there is a continuum of properties between quasars and Seyfert galaxies
and we test the validity of the traditional division between the two classes of
AGN.Comment: 66 pages, 15 figures (3 color), accepted by A
The SEGUE Stellar Parameter Pipeline. III. Comparison with High-Resolution Spectroscopy of SDSS/SEGUE Field Stars
We report high-resolution spectroscopy of 125 field stars previously observed
as part of the Sloan Digital Sky Survey and its program for Galactic studies,
the Sloan Extension for Galactic Understanding and Exploration (SEGUE). These
spectra are used to measure radial velocities and to derive atmospheric
parameters, which we compare with those reported by the SEGUE Stellar Parameter
Pipeline (SSPP). The SSPP obtains estimates of these quantities based on SDSS
ugriz photometry and low-resolution (R = 2000) spectroscopy. For F- and G-type
stars observed with high signal-to-noise ratios (S/N), we empirically determine
the typical random uncertainties in the radial velocities, effective
temperatures, surface gravities, and metallicities delivered by the SSPP to be
2.4 km/s, 130 K (2.2%), 0.21 dex, and 0.11 dex, respectively, with systematic
uncertainties of a similar magnitude in the effective temperatures and
metallicities. We estimate random errors for lower S/N spectra based on
numerical simulations.Comment: 37 pages, 6 tables, 6 figures, submitted to the Astronomical Journa
Halo mass - concentration relation from weak lensing
We perform a statistical weak lensing analysis of dark matter profiles around
tracers of halo mass from galactic- to cluster-size halos. In this analysis we
use 170,640 isolated ~L* galaxies split into ellipticals and spirals, 38,236
groups traced by isolated spectroscopic Luminous Red Galaxies (LRGs) and 13,823
MaxBCG clusters from the Sloan Digital Sky Survey (SDSS) covering a wide range
of richness. Together these three samples allow a determination of the density
profiles of dark matter halos over three orders of magnitude in mass, from
10^{12} M_{sun} to 10^{15} M_{sun}. The resulting lensing signal is consistent
with an NFW or Einasto profile on scales outside the central region. We find
that the NFW concentration parameter c_{200b} decreases with halo mass, from
around 10 for galactic halos to 4 for cluster halos. Assuming its dependence on
halo mass in the form of c_{200b} = c_0 [M/(10^{14}M_{sun}/h)]^{\beta}, we find
c_0=4.6 +/- 0.7 (at z=0.22) and \beta=0.13 +/- 0.07, with very similar results
for the Einasto profile. The slope (\beta) is in agreement with theoretical
predictions, while the amplitude is about two standard deviations below the
predictions for this mass and redshift, but we note that the published values
in the literature differ at a level of 10-20% and that for a proper comparison
our analysis should be repeated in simulations. We discuss the implications of
our results for the baryonic effects on the shear power spectrum: since these
are expected to increase the halo concentration, the fact that we see no
evidence of high concentrations on scales above 20% of the virial radius
suggests that baryonic effects are limited to small scales, and are not a
significant source of uncertainty for the current weak lensing measurements of
the dark matter power spectrum. [ABRIDGED]Comment: 17 pages, 5 figures, accepted to JCAP pending minor revisions that
are included in v2 here on arXi
Cosmological parameters from SDSS and WMAP
We measure cosmological parameters using the three-dimensional power spectrum
P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in
combination with WMAP and other data. Our results are consistent with a
``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt,
tensor modes or massive neutrinos. Adding SDSS information more than halves the
WMAP-only error bars on some parameters, tightening 1 sigma constraints on the
Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter
density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on
neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when
dropping prior assumptions about curvature, neutrinos, tensor modes and the
equation of state. Our results are in substantial agreement with the joint
analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive
consistency check with independent redshift survey data and analysis
techniques. In this paper, we place particular emphasis on clarifying the
physical origin of the constraints, i.e., what we do and do not know when using
different data sets and prior assumptions. For instance, dropping the
assumption that space is perfectly flat, the WMAP-only constraint on the
measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to
t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running
tilt, neutrino mass and equation of state in the list of free parameters, many
constraints are still quite weak, but future cosmological measurements from
SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt
figures available at http://www.hep.upenn.edu/~max/sdsspars.htm
- …
