11,989 research outputs found

    Quenching Star Formation in the Green Valley: The Mass Flux at Intermediate Redshifts

    Get PDF
    We have obtained several hundred very deep spectra with DEIMOS/Keck in order to estimate the galactic mass flux density at intermediate redshifts (0.6 < z < 0.9) from the ”blue cloud” to the red sequence across the so-called ”green valley”, the intermediate region in the color-magnitude plot between those two populations. We use spectral indices (specifically D_n (4000) and H_(δ,A)) to determine star formation histories. Together with an independent measurement of number density of galaxies in each bin of the color-magnitude plot, one can infer the rate at which galaxies from a given sample are transiting through that bin. Measuring this value for all magnitude values, studies at lower redshift determined that the mass flux density in the green valley is comparable to both the mass build-up rate of the red sequence and the mass loss rate from the blue cloud. We show preliminary results for our intermediate redshift sample

    Lyman Break Analogs: Constraints on the Formation of Extreme Starbursts at Low and High Redshift

    Get PDF
    Lyman Break Analogs (LBAs), characterized by high far-UV luminosities and surface brightnesses as detected by GALEX, are intensely star-forming galaxies in the low-redshift universe (z0.2z\sim 0.2), with star formation rates reaching up to 50 times that of the Milky Way. These objects present metallicities, morphologies and other physical properties similar to higher redshift Lyman Break Galaxies (LBGs), motivating the detailed study of LBAs as local laboratories of this high-redshift galaxy population. We present results from our recent integral-field spectroscopy survey of LBAs with Keck/OSIRIS, which shows that these galaxies have the same nebular gas kinematic properties as high-redshift LBGs. We argue that such kinematic studies alone are not an appropriate diagnostic to rule out merger events as the trigger for the observed starburst. Comparison between the kinematic analysis and morphological indices from HST imaging illustrates the difficulties of properly identifying (minor or major) merger events, with no clear correlation between the results using either of the two methods. Artificial redshifting of our data indicates that this problem becomes even worse at high redshift due to surface brightness dimming and resolution loss. Whether mergers could generate the observed kinematic properties is strongly dependent on gas fractions in these galaxies. We present preliminary results of a CARMA survey for LBAs and discuss the implications of the inferred molecular gas masses for formation models.Comment: To appear in the proceedings of IAU Symposium 277, "Tracing the Ancestry of Galaxies on the Land of our Ancestors", eds. C. Carignan, K.C. Freeman, and F. Combe

    Approximation Algorithms for Capacitated k-Travelling Repairmen Problems

    Get PDF
    We study variants of the capacitated vehicle routing problem. In the multiple depot capacitated k-travelling repairmen problem (MD-CkTRP), we have a collection of clients to be served by one vehicle in a fleet of k identical vehicles based at given depots. Each client has a given demand that must be satisfied, and each vehicle can carry a total of at most Q demand before it must resupply at its original depot. We wish to route the vehicles in a way that obeys the constraints while minimizing the average time (latency) required to serve a client. This generalizes the Multi-depot k-Travelling Repairman Problem (MD-kTRP) [Chekuri and Kumar, IEEE-FOCS, 2003; Post and Swamy, ACM-SIAM SODA, 2015] to the capacitated vehicle setting, and while it has been previously studied [Lysgaard and Wohlk, EJOR, 2014; Rivera et al, Comput Optim Appl, 2015], no approximation algorithm with a proven ratio is known. We give a 42.49-approximation to this general problem, and refine this constant to 25.49 when clients have unit demands. As far as we are aware, these are the first constant-factor approximations for capacitated vehicle routing problems with a latency objective. We achieve these results by developing a framework allowing us to solve a wider range of latency problems, and crafting various orienteering-style oracles for use in this framework. We also show a simple LP rounding algorithm has a better approximation ratio for the maximum coverage problem with groups (MCG), first studied by Chekuri and Kumar [APPROX, 2004], and use it as a subroutine in our framework. Our approximation ratio for MD-CkTRP when restricted to uncapacitated setting matches the best known bound for it [Post and Swamy, ACM-SIAM SODA, 2015]. With our framework, any improvements to our oracles or our MCG approximation will result in improved approximations to the corresponding k-TRP problem

    Torque magnetometry study of the spin reorientation transition and temperature-dependent magnetocrystalline anisotropy in NdCo5

    Get PDF
    We present the results of torque magnetometry and magnetic susceptibility measurements to study in detail the spin reorientation transition (SRT) and magnetic anisotropy in the permanent magnet NdCo5. We further show simulations of the measurements using first-principles calculations based on density-functional theory and the disordered local moment picture of magnetism at finite temperatures. The good agreement between theory and experimental data leads to a detailed description of the physics underpinning the SRT. In particular we are able to resolve the magnetization of, and to reveal a canting between, the Nd and Co sublattices. The torque measurements carried out in the ac and ab planes near the easy direction allow us to estimate the anisotropy constants, K 1, K 2 and K 4 and their temperature dependences. Torque curves, τ(γ) recorded by varying the direction of a constant magnetic field in the crystallographic ac plane show a reversal in the polarity as the temperature is changed across the SRT (240 < T < 285 K). Within this domain, τ(γ) exhibits unusual features different to those observed above and below the transition. The single crystals of NdCo5 were grown using the optical floating zone technique

    Tunability of the spin reorientation transitions with pressure in NdCo5

    Get PDF
    We present pressure-dependent magnetization measurements carried out in the domain of the spin reorientation transitions (SRTs) of a NdCo5 single crystal. The application of a hydrostatic pressure leads to a shift in the SRTs to higher temperatures. This shift is found to be very sensitive to pressure, with the SRT temperatures increasing at a rate of ≈17 K/GPa. To explain the experimental results, we have also performed first-principles calculations of the SRT temperatures for different applied strains, which corroborate the experimental findings. The calculations attribute the pressure dependence of the SRTs to a faster weakening of the Co contribution to the magnetocrystalline anisotropy with pressure compared to the Nd contribution

    Manufacturing requirements

    Get PDF
    In recent years, natural laminar flow (NLF) has been proven to be achievable on modern smooth airframe surfaces over a range of cruise flight conditions representative of most current business and commuter aircraft. Published waviness and boundary layer transition measurements on several modern metal and composite airframes have demonstrated the fact that achievable surface waviness is readily compatible with laminar flow requirements. Currently, the principal challenge to the manufacture of NLF-compatible surfaces is two-dimensional roughness in the form of steps and gaps at structural joints. Results of recent NASA investigations on manufacturing tolerances for NLF surfaces, including results of a flight experiment are given. Based on recent research, recommendations are given for conservative manufacturing tolerances for waviness and shaped steps

    Constraining Stellar Feedback: Shock-ionized Gas in Nearby Starburst Galaxies

    Get PDF
    (abridged) We investigate the properties of feedback-driven shocks in 8 nearby starburst galaxies using narrow-band imaging data from the Hubble Space Telescope (HST). We identify the shock--ionized component via the line diagnostic diagram \oiii/\hb vs. \sii (or \nii)/\ha, applied to resolved regions 3--15 pc in size. We divide our sample into three sub-samples: sub-solar (Holmberg II, NGC 1569, NGC 4214, NGC 4449, and NGC 5253), solar (He 2-10, NGC 3077) and super-solar (NGC 5236) for consistent shock measurements. For the sub-solar sub-sample, we derive three scaling relations: (1) LshockSFR 0.62L_{shock} \propto {SFR}^{~0.62}, (2) LshockΣSFR,HL 0.92L_{shock} \propto {\Sigma_{SFR,HL}}^{~0.92}, and (3) Lshock/Ltot(LH/L,H)0.65L_{shock}/L_{tot} \propto {(L_H/L_{\odot,H})}^{-0.65}, where LshockL_{shock} is the \ha luminosity from shock--ionized gas, ΣSFR,HL{\Sigma_{SFR,HL}} the SFR per unit half-light area, LtotL_{tot} the total \ha luminosity, and LH/L,HL_H/L_{\odot,H} the absolute H-band luminosity from 2MASS normalized to solar luminosity. The other two sub--samples do not have enough number statistics, but appear to follow the first scaling relation. The energy recovered indicates that the shocks from stellar feedback in our sample galaxies are fully radiative. If the scaling relations are applicable in general to stellar feedback, our results are similar to those by Hopkins et al. (2012) for galactic super winds. This similarity should, however, be taken with caution at this point, as the underlying physics that enables the transition from radiative shocks to gas outflows in galaxies is still poorly understood.Comment: 29 pages, 14 figures, accepted for publication in the Ap

    Confinement of the Sun's interior magnetic field: some exact boundary-layer solutions

    Full text link
    High-latitude laminar confinement of the Sun's interior magnetic field is shown to be possible, as originally proposed by Gough and McIntyre (1998) but contrary to a recent claim by Brun and Zahn (A&A 2006). Mean downwelling as weak as 2x10^-6cm/s -- gyroscopically pumped by turbulent stresses in the overlying convection zone and/or tachocline -- can hold the field in advective-diffusive balance within a confinement layer of thickness scale ~ 1.5Mm ~ 0.002 x (solar radius) while transmitting a retrograde torque to the Ferraro-constrained interior. The confinement layer sits at the base of the high-latitude tachocline, near the top of the radiative envelope and just above the `tachopause' marking the top of the helium settling layer. A family of exact, laminar, frictionless, axisymmetric confinement-layer solutions is obtained for uniform downwelling in the limit of strong rotation and stratification. A scale analysis shows that the flow is dynamically stable and the assumption of laminar flow realistic. The solution remains valid for downwelling values of the order of 10^-5cm/s but not much larger. This suggests that the confinement layer may be unable to accept a much larger mass throughput. Such a restriction would imply an upper limit on possible internal field strengths, perhaps of the order of hundreds of gauss, and would have implications also for ventilation and lithium burning. The solutions have interesting chirality properties not mentioned in the paper owing to space restrictions, but described at http://www.atmos-dynamics.damtp.cam.ac.uk/people/mem/papers/SQBO/solarfigure.htmlComment: 6 pages, 3 figures, to appear in conference proceedings: Unsolved Problems in Stellar Physic

    A Framework for Morphing Capability Assessment

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76224/1/AIAA-2004-1654-376.pd
    corecore