1,008 research outputs found

    Why do drivers become safer over the first three months of driving? A longitudinal qualitative study

    Get PDF
    Drivers are at high crash risk when they begin independent driving, with liability decreasing steeply over the first three months. Their behavioural development, and other changes underlying improved safety are not well understood. We adopted an innovative longitudinal qualitative design, with thirteen newly qualified drivers completing a total of 36 semi-structured interviews, one, two and three months after acquiring a full UK driving license. The interviews probed high-risk factors for new drivers, as well as allowing space for generating novel road safety issues. Analysis adopted a dual deductive and inductive interpretative thematic approach, identifying three super-ordinate themes: (1) Improvements in car control skills and situation awareness; (2) A reduction in the thrill of taking risks when driving against a background of generally increasing driving speed; (3) Early concerns about their social status in the eyes of other road users during the early stages of driving, which may put pressure on them to drive faster than they felt comfortable with. The study provides important new leads towards understanding how novice driving becomes safer over the first few months of driving, including how well-studied concepts of driving skill and style may change during development of independent driving, and a focus on the less rigorously studied concept of social status

    Long-term vascular access ports as a means of sedative administration in a rodent fMRI survival model

    Get PDF
    The purpose of this study is to develop a rodent functional magnetic resonance imaging (fMRI) survival model with the use of heparin-coated vascular access devices. Such a model would ease the administration of sedative agents, reduce the number of animals required in survival experiments and eliminate animal-to-animal variability seen in previous designs. Seven male Sprague-Dawley rats underwent surgical placement of an MRI-compatible vascular access port, followed by implantable electrode placement on the right median nerve. Functional MRI during nerve stimulation and resting-state functional connectivity MRI (fcMRI) were performed at times 0, 2, 4, 8 and 12 weeks postoperatively using a 9.4 T scanner. Anesthesia was maintained using intravenous dexmedetomidine and reversed using atipamezole. There were no fatalities or infectious complications during this study. All vascular access ports remained patent. Blood oxygen level dependent (BOLD) activation by electrical stimulation of the median nerve using implanted electrodes was seen within the forelimb sensory region (S1FL) for all animals at all time points. The number of activated voxels decreased at time points 4 and 8 weeks, returning to a normal level at 12 weeks, which is attributed to scar tissue formation and resolution around the embedded electrode. The applications of this experiment extend far beyond the scope of peripheral nerve experimentation. These vascular access ports can be applied to any survival MRI study requiring repeated medication administration, intravenous contrast, or blood sampling

    Detection of Potential Transit Signals in Sixteen Quarters of Kepler Mission Data

    Full text link
    We present the results of a search for potential transit signals in four years of photometry data acquired by the Kepler Mission. The targets of the search include 111,800 stars which were observed for the entire interval and 85,522 stars which were observed for a subset of the interval. We found that 9,743 targets contained at least one signal consistent with the signature of a transiting or eclipsing object, where the criteria for detection are periodicity of the detected transits, adequate signal-to-noise ratio, and acceptance by a number of tests which reject false positive detections. When targets that had produced a signal were searched repeatedly, an additional 6,542 signals were detected on 3,223 target stars, for a total of 16,285 potential detections. Comparison of the set of detected signals with a set of known and vetted transit events in the Kepler field of view shows that the recovery rate for these signals is 96.9%. The ensemble properties of the detected signals are reviewed.Comment: Accepted by ApJ Supplemen

    CFHTLenS: Co-evolution of galaxies and their dark matter haloes

    Full text link
    Galaxy-galaxy weak lensing is a direct probe of the mean matter distribution around galaxies. The depth and sky coverage of the CFHT Legacy Survey yield statistically significant galaxy halo mass measurements over a much wider range of stellar masses (108.7510^{8.75} to 1011.3M10^{11.3} M_{\odot}) and redshifts (0.2<z<0.80.2 < z < 0.8) than previous weak lensing studies. At redshift z0.5z \sim 0.5, the stellar-to-halo mass ratio (SHMR) reaches a maximum of 4.0±0.24.0\pm0.2 percent as a function of halo mass at 1012.25M\sim 10^{12.25} M_{\odot}. We find, for the first time from weak lensing alone, evidence for significant evolution in the SHMR: the peak ratio falls as a function of cosmic time from 4.5±0.34.5 \pm 0.3 percent at z0.7z \sim 0.7 to 3.4±0.23.4 \pm 0.2 percent at z0.3z \sim 0.3, and shifts to lower stellar mass haloes. These evolutionary trends are dominated by red galaxies, and are consistent with a model in which the stellar mass above which star formation is quenched "downsizes" with cosmic time. In contrast, the SHMR of blue, star-forming galaxies is well-fit by a power law that does not evolve with time. This suggests that blue galaxies form stars at a rate that is balanced with their dark matter accretion in such a way that they evolve along the SHMR locus. The redshift dependence of the SHMR can be used to constrain the evolution of the galaxy population over cosmic time.Comment: 18 pages, MNRAS, in pres

    Structural analysis of the starfish SALMFamide neuropeptides S1 and S2: The N-terminal region of S2 facilitates self-association

    Get PDF
    The neuropeptides S1 (GFNSALMFamide) and S2 (SGPYSFNSGLTFamide), which share sequence similarity, were discovered in the starfish Asterias rubens and are prototypical members of the SALMFamide family of neuropeptides in echinoderms. SALMFamide neuropeptides act as muscle relaxants and both S1 and S2 cause relaxation of cardiac stomach and tube foot preparations in vitro but S2 is an order of magnitude more potent than S1. Here we investigated a structural basis for this difference in potency using spectroscopic techniques. Circular dichroism spectroscopy showed that S1 does not have a defined structure in aqueous solution and this was supported by 2D nuclear magnetic resonance experiments. In contrast, we found that S2 has a well-defined conformation in aqueous solution. However, the conformation of S2 was concentration dependent, with increasing concentration inducing a transition from an unstructured to a structured conformation. Interestingly, this property of S2 was not observed in an N-terminally truncated analogue of S2 (short S2 or SS2; SFNSGLTFamide). Collectively, the data obtained indicate that the N-terminal region of S2 facilitates peptide self-association at high concentrations, which may have relevance to the biosynthesis and/or bioactivity of S2 in vivo

    Array-based evolution of DNA aptamers allows modelling of an explicit sequence-fitness landscape

    Get PDF
    Mapping the landscape of possible macromolecular polymer sequences to their fitness in performing biological functions is a challenge across the biosciences. A paradigm is the case of aptamers, nucleic acids that can be selected to bind particular target molecules. We have characterized the sequence-fitness landscape for aptamers binding allophycocyanin (APC) protein via a novel Closed Loop Aptameric Directed Evolution (CLADE) approach. In contrast to the conventional SELEX methodology, selection and mutation of aptamer sequences was carried out in silico, with explicit fitness assays for 44 131 aptamers of known sequence using DNA microarrays in vitro. We capture the landscape using a predictive machine learning model linking sequence features and function and validate this model using 5500 entirely separate test sequences, which give a very high observed versus predicted correlation of 0.87. This approach reveals a complex sequence-fitness mapping, and hypotheses for the physical basis of aptameric binding; it also enables rapid design of novel aptamers with desired binding properties. We demonstrate an extension to the approach by incorporating prior knowledge into CLADE, resulting in some of the tightest binding sequences

    Terrestrial Planet Occurrence Rates for the Kepler GK Dwarf Sample

    Get PDF
    We measure planet occurrence rates using the planet candidates discovered by the Q1-Q16 Kepler pipeline search. This study examines planet occurrence rates for the Kepler GK dwarf target sample for planet radii, 0.75<Rp<2.5 Rearth, and orbital periods, 50<Porb<300 days, with an emphasis on a thorough exploration and identification of the most important sources of systematic uncertainties. Integrating over this parameter space, we measure an occurrence rate of F=0.77 planets per star, with an allowed range of 0.3<F<1.9. The allowed range takes into account both statistical and systematic uncertainties, and values of F beyond the allowed range are significantly in disagreement with our analysis. We generally find higher planet occurrence rates and a steeper increase in planet occurrence rates towards small planets than previous studies of the Kepler GK dwarf sample. Through extrapolation, we find that the one year orbital period terrestrial planet occurrence rate, zeta_1=0.1, with an allowed range of 0.01<zeta_1<2, where zeta_1 is defined as the number of planets per star within 20% of the Rp and Porb of Earth. For G dwarf hosts, the zeta_1 parameter space is a subset of the larger eta_earth parameter space, thus zeta_1 places a lower limit on eta_earth for G dwarf hosts. From our analysis, we identify the leading sources of systematics impacting Kepler occurrence rate determinations as: reliability of the planet candidate sample, planet radii, pipeline completeness, and stellar parameters.Comment: 19 Pages, 17 Figures, Submitted ApJ. Python source to support Kepler pipeline completeness estimates available at http://github.com/christopherburke/KeplerPORTs
    corecore