10,196 research outputs found

    Abacus models for parabolic quotients of affine Weyl groups

    Full text link
    We introduce abacus diagrams that describe minimal length coset representatives in affine Weyl groups of types B, C, and D. These abacus diagrams use a realization of the affine Weyl group of type C due to Eriksson to generalize a construction of James for the symmetric group. We also describe several combinatorial models for these parabolic quotients that generalize classical results in affine type A related to core partitions.Comment: 28 pages, To appear, Journal of Algebra. Version 2: Updated with referee's comment

    The enumeration of fully commutative affine permutations

    Get PDF
    We give a generating function for the fully commutative affine permutations enumerated by rank and Coxeter length, extending formulas due to Stembridge and Barcucci--Del Lungo--Pergola--Pinzani. For fixed rank, the length generating functions have coefficients that are periodic with period dividing the rank. In the course of proving these formulas, we obtain results that elucidate the structure of the fully commutative affine permutations.Comment: 18 pages; final versio

    Approximation of Random Slow Manifolds and Settling of Inertial Particles under Uncertainty

    Get PDF
    A method is provided for approximating random slow manifolds of a class of slow-fast stochastic dynamical systems. Thus approximate, low dimensional, reduced slow systems are obtained analytically in the case of sufficiently large time scale separation. To illustrate this dimension reduction procedure, the impact of random environmental fluctuations on the settling motion of inertial particles in a cellular flow field is examined. It is found that noise delays settling for some particles but enhances settling for others. A deterministic stable manifold is an agent to facilitate this phenomenon. Overall, noise appears to delay the settling in an averaged sense.Comment: 27 pages, 9 figure

    Results and conjectures on simultaneous core partitions

    Full text link
    An n-core partition is an integer partition whose Young diagram contains no hook lengths equal to n. We consider partitions that are simultaneously a-core and b-core for two relatively prime integers a and b. These are related to abacus diagrams and the combinatorics of the affine symmetric group (type A). We observe that self-conjugate simultaneous core partitions correspond to the combinatorics of type C, and use abacus diagrams to unite the discussion of these two sets of objects. In particular, we prove that (2n)- and (2mn+1)-core partitions correspond naturally to dominant alcoves in the m-Shi arrangement of type C_n, generalizing a result of Fishel--Vazirani for type A. We also introduce a major statistic on simultaneous n- and (n+1)-core partitions and on self-conjugate simultaneous (2n)- and (2n+1)-core partitions that yield q-analogues of the Coxeter-Catalan numbers of type A and type C. We present related conjectures and open questions on the average size of a simultaneous core partition, q-analogs of generalized Catalan numbers, and generalizations to other Coxeter groups. We also discuss connections with the cyclic sieving phenomenon and q,t-Catalan numbers.Comment: 17 pages; to appear in the European Journal of Combinatoric
    corecore