
European Journal of Combinatorics 31 (2010) 1342–1359

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

The enumeration of fully commutative affine permutations
Christopher R.H. Hanusa a, Brant C. Jones b
a Department of Mathematics, Queens College (CUNY), 65-30 Kissena Blvd., Flushing, NY 11367, United States
b Department of Mathematics, One Shields Avenue, University of California, Davis, CA 95616, United States

a r t i c l e i n f o

Article history:
Received 30 June 2009
Accepted 23 September 2009
Available online 16 December 2009

a b s t r a c t

We give a generating function for the fully commutative affine per-
mutations enumerated by rank and Coxeter length, extending for-
mulas due to Stembridge andBarcucci–Del Lungo–Pergola–Pinzani.
For fixed rank, the length generating functions have coefficients
that are periodic with period dividing the rank. In the course of
proving these formulas, we obtain results that elucidate the struc-
ture of the fully commutative affine permutations.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

LetW be a Coxeter group. An elementw ofW is fully commutative if any reduced expression forw
can be obtained from any other using only commutation relations among the generators. For example,
ifW is simply laced then the fully commutative elements ofW are those with no sisjsi factor in any
reduced expression, where si and sj are any noncommuting generators.
The fully commutative elements form an interesting class of Coxeter group elements with many

special properties relating to smoothness of Schubert varieties [12], Kazhdan–Lusztig polynomials and
µ-coefficients [6,16], Lusztig’s a(w)-function [9,26], and decompositions into cells [25,22,18]. Some
of the properties carry over to the freely braided and maximally clustered elements introduced in
[19,20,23]. At the level of the Coxeter group, [28] shows that each fully commutative element w has
a unique labeled partial order called the heap ofw whose linear extensions encode all of the reduced
expressions forw.
Stembridge [28] (see also [11,14]) classified the Coxeter groups having finitely many fully

commutative elements. In [29], he then enumerated the total number of fully commutative elements
in each of these Coxeter groups. The type A series yields the Catalan numbers, a result previously given
in [5]. Barcucci et al. [3] have enumerated the fully commutative permutations by Coxeter length,
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obtaining a q-analogue of the Catalan numbers. Our main result in Theorem 3.2 is an analogue of this
result for the affine symmetric group.
In a general Coxeter group, the fully commutative elements index a basis for a quotient of the

corresponding Hecke algebra [14,11,17]. In type A, this quotient is the Temperley–Lieb algebra;
see [30,34]. Therefore, our result can be interpreted as a graded dimension formula for the affine
analogue of this algebra.
In Section 2, we introduce the necessary definitions and background information. In Section 3,

we enumerate the fully commutative affine permutations by decomposing them into several subsets.
The formula that we obtain turns out to involve a ratio of q-Bessel functions as described in [2] arising
as the solution obtained by [8] of a certain recurrence relation on the generating function. A similar
phenomenon occurred in [3], and our work can be viewed as a description of how to lift this formula
to the affine case. It turns out that the only additional ingredients that we need for our formula are
certain sums and products of q-binomial coefficients. In Section 4, we prove that for fixed rank, the
coefficients of the length generating functions are periodic with period dividing the rank. This result
gives another way to determine the generating functions by computing the finite initial sequence of
coefficients until the periodicity takes over. We mention some further questions in Section 5.

2. Background

In this section, we introduce the affine symmetric group, abacus diagrams forminimal length coset
representatives, and q-binomial coefficients.

2.1. The affine symmetric group

We view the symmetric group Sn as the Coxeter group of type A with generating set S =
{s1, . . . , sn−1} and relations of the form (sisi±1)3 = 1 together with (sisj)2 = 1 for |i − j| ≥ 2 and
si2 = 1. We denote

⋃
n≥1 Sn by S∞ and call n(w) the minimal rank n of w ∈ Sn ⊂ S∞. The affine

symmetric group S̃n is also a Coxeter group; it is generated by S̃ = S ∪ {s0} with the same relations
as in the symmetric group together with s02 = 1, (sn−1s0)3 = 1, (s0s1)3 = 1, and (s0sj)2 = 1 for
2 ≤ j ≤ n− 2.
Recall that the products of generators from S or S̃ with a minimal number of factors are called

reduced expressions, and `(w) is the length of such an expression for an (affine) permutation w.
Given an (affine) permutation w, we represent reduced expressions for w in sans serif font, say
w = w1w2 · · ·wp where each wi ∈ S or S̃. We call any expression of the form sisi±1si a short braid,
where the indices i, i ± 1 are taken mod n if we are working in S̃n. There is a well-known theorem
of Matsumoto [24] and Tits [31], which states that any reduced expression for w can be transformed
into any other by applying a sequence of relations of the form (sisi±1)3 = 1 (where again i, i ± 1 are
taken mod n in S̃n) together with (sisj)2 = 1 for |i− j| > 1. We say that si is a left descent forw ∈ S̃n if
`(siw) < `(w) and we say that si is a right descent forw ∈ S̃n if `(wsi) < `(w).
As in [28], we define an equivalence relation on the set of reduced expressions for an (affine)

permutation by saying that two reduced expressions are in the same commutativity class if one can be
obtained from the other by a sequence of commuting moves of the form sisj 7→ sjsi where |i− j| ≥ 2.
If the reduced expressions for a permutation w form a single commutativity class, then we say w is
fully commutative.
If w = w1 · · ·wk is a reduced expression for any permutation, then following [28] we define a

partial ordering on the indices {1, . . . , k} by the transitive closure of the relation i l j if i < j and wi
does not commute with wj. We label each element i of the poset by the corresponding generator wi.
It follows quickly from the definition that if w and w′ are two reduced expressions for an element
w that are in the same commutativity class then the labeled posets of w and w′ are isomorphic.
This isomorphism class of labeled posets is called the heap of w, where w is a reduced expression
representative for a commutativity class ofw. In particular, ifw ∈ Sn is fully commutative then it has
a single commutativity class, and so there is a unique heap of w. Cartier and Foata [10] were among
the first to study heaps of dimers, which were generalized to other settings by Viennot [32].
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We also refer to elements in the symmetric group by the one-line notation w = [w1w2 · · ·wn],
where w is the bijection mapping i to wi. Then the generators si are the adjacent transpositions
interchanging the entries i and i + 1 in the one-line notation. Let w = [w1 · · ·wn], and suppose that
p = [p1 · · · pk] is another permutation in Sk for k ≤ n. We sayw contains the permutation pattern p or
w contains p as a one-line pattern whenever there exists a subsequence 1 ≤ i1 < i2 < · · · < ik ≤ n
such that

wia < wib if and only if pa < pb
for all 1 ≤ a < b ≤ k. We call (i1, i2, . . . , ik) the pattern instance. For example, [53241] contains the
pattern [321] in several ways, including the underlined subsequence. Ifw does not contain the pattern
p, we say thatw avoids p.
The affine symmetric group S̃n is realized in [7, Chapter 8] as the group of bijections w : Z → Z

satisfyingw(i+ n) = w(i)+ n and
∑n
i=1w(i) =

∑n
i=1 i =

(
n+1
2

)
. We call the infinite sequence

(. . . , w(−1), w(0), w(1), w(2), . . . , w(n), w(n+ 1), . . .)

the complete notation forw and

[w(1), w(2), . . . , w(n)]

the base window for w. By definition, the entries of the base window determine w and its complete
notation. Moreover, the entries of the base window can be any set of integers that are normalized to
sum to

(
n+1
2

)
and such that the entries form a permutation of the residue classes in Z/(nZ) when

reduced mod n. That is, no two entries of the base window have the same residue mod n. With these
considerations in mind, we will represent an affine permutation using an abacus diagram together
with a finite permutation.
To describe this, observe that Sn acts on the base window by permuting the entries, which induces

an action of Sn onZ. In this action, the Coxeter generator si simultaneously interchangesw(i+kn)with
w(i+ 1+ kn) for all k ∈ Z. Moreover, the affine generator s0 interchanges allw(kn)withw(kn+ 1).
Hence, Sn is a parabolic subgroup of S̃n. We form the parabolic quotient

S̃n/Sn = {w ∈ S̃n : `(wsi) > `(w) for all si where 1 ≤ i ≤ n− 1}.

By a standard result in the theory of Coxeter groups, this set gives a unique representative of minimal
length from each coset wSn of S̃n. For more on this construction, see [7, Section 2.4]. In our case, the
base window of the minimal length coset representative of an element is obtained by ordering the
entries that appear in the base window increasingly. This construction implies that, as sets, the affine
symmetric group can be identified with the set (̃Sn/Sn)× Sn. The minimal length coset representative
determines which entries appear in the base window, and the finite permutation orders these entries
in the base window.
We say thatw has a descent at iwheneverw(i) > w(i+ 1). Note that ifw has a descent at i, then

s(i mod n) is a right descent in the usual Coxeter theoretic sense that `(wsi) < `(w).

2.2. Abacus diagrams

The abacus diagrams of [21] give a combinatorial model for the minimal length coset
representatives in S̃n/Sn. Other combinatorial models and references for these are given in [4].
An abacus diagram is a diagram containing n columns labeled 1, 2, . . . , n, called runners. The

horizontal rows are called levels and runner i contains entries labeled by rn+ i on each level r where
−∞ < r < ∞. We draw the abacus so that each runner is vertical, oriented with −∞ at the top
and∞ at the bottom, with runner 1 in the leftmost position, increasing to runner n in the rightmost
position. Entries in the abacus diagrammay be circled; such circled elements are called beads. Entries
that are not circled are called gaps. The linear ordering of the entries given by the labels rn+ i is called
the reading order of the abacus which corresponds to scanning left to right, top to bottom.
We associate an abacus to each minimal length coset representative w ∈ S̃n/Sn by drawing beads

down to level wi in runner i for each 1 ≤ i ≤ n where {w1, w2, . . . , wn} is the set of integers in the
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base window of w, with no two having the same residue mod n. Since the entries wi sum to
(
n+1
2

)
,

we call the abacus constructed in this way balanced. It follows from the construction that the Coxeter
length of the minimal length coset representative can be determined from the abacus.

Proposition 2.1. Let w ∈ S̃n/Sn and form the abacus for w as described above. Let mi denote the number
of gaps preceding the lowest bead of runner i in reading order, for each 1 ≤ i ≤ n. Then, the Coxeter length
`(w) is

∑n
i=1mi.

Proof. This result is part of the folklore of the subject. One proof can be obtained by combining
Propositions 3.2.5 and 3.2.8 of [4]. �

Example 2.2. The affine permutation w̃ = [−1,−4, 14, 1] is identified with the pair (w0, w)where
w is the finite permutation s1s3 = [2143] which sorts the elements of the minimal length coset
representative w0 = [−4,−1, 1, 14]. Note that the entries of w0 sum to

(
5
2

)
= 10. The abacus

ofw0 is shown below.

From the abacus, we see that w0 has Coxeter length 1 + 10 + 0 + 0 = 11. For example, the ten
gaps preceding the lowest bead in runner 2 are 13, 12, 11, 9, 8, 7, 5, 4, 3, and 0. Hence, w̃ has length
`(w0)+ `(w) = 13.

In this work, we are primarily concerned with the fully commutative affine permutations. Green
has given a criterion for these in terms of the complete notation for w. His result is a generalization
of a theorem from [5] which states thatw ∈ Sn is fully commutative if and only ifw avoids [321] as a
permutation pattern.

Theorem 2.3 ([15]). Let w ∈ S̃n. Then, w is fully commutative if and only if there do not exist integers
i < j < k such that w(i) > w(j) > w(k).

Observe that even though the entries in the base window of a minimal length coset representative
are sorted, the element may not be fully commutative by Theorem 2.3. For example, if we write the
elementw0 = [−4,−1, 1, 14] in complete notation

w0 = (. . . ,−8,−5,−3, 10,−4,−1, 1, 14, 0, 3, 5, 18, . . .)
we obtain a [321]-instance as indicated in boldface.
In order tomore easily exploit this phenomenon,we slightlymodify the construction of the abacus.

Observe that the length formula in Proposition 2.1 depends only on the relative positions of the beads
in the abacus, and is unchanged if we shift every bead in the abacus exactly k positions to the right in
reading order. Moreover, each time we shift the beads one unit to the right, we change the sum of the
entries occurring on the lowest bead in each runner by exactly n. In fact, this shifting corresponds to
shifting the base window inside the complete notation. Therefore, we may define an abacus in which
all of the beads are shifted so that position n+ 1 becomes the first gap in reading order. We call such
abaci normalized. Although the entries of the lowest beads in each runnerwill no longer sum to

(
n+1
2

)
,

we can reverse the shifting to recover the balanced abacus. Hence, this process is a bijection on abaci,
and we may assume from now on that our abaci are normalized.
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Fig. 1. The first threemembers—AR
1 , A

R
2 , and A

R
3 —of the infinite family of abaci {A

R
i }with long runnersR = {2, 5}. These abaci

correspond to certain long fully commutative elements of S̃5 .

Proposition 2.4. Let A be a normalized abacus for w0 ∈ S̃n/Sn, and suppose the last bead occurs at entry
i. Then,w0 is fully commutative if and only if the lowest beads on runners of A occur only in positions that
are a subset of {1, 2, . . . , n} ∪ {i− n+ 1, i− n+ 2, . . . , i}.

Proof. By construction, position n + 1 is the first gap in A, so the lowest bead on runner 1 occurs at
position 1, and all of the positions 2, 3, . . . , n are occupied by beads. Suppose there exists a lowest
bead at position j with n < j < i − n + 1, and consider the complete notation for w0 obtained by
arranging the positions of the lowest beads in each runner sequentially in the basewindow.We obtain
a [321]-instance in positions i− n from the window immediately preceding the base window, j from
the base window, and n + 1 from the window immediately succeeding the base window. Hence, w0
is not fully commutative by Theorem 2.3.
Otherwise, there does not exist j such that n < j < i − n + 1. Hence, each of the entries in

the base window belongs to {1, 2, . . . , n} in which case we say that the entry is short, or it belongs
to {i − n + 1, i − n + 2, . . . , i} in which case we say that the entry is long. If i ≥ 2n, then these
designations are disjoint; otherwise, some entries may be both short and long. For example, in the
first normalized abacus shown in Fig. 1, the entries 1, 3, and 4 are short while entries 12 and 10 are
long. The corresponding complete notation is (. . . , 7|1, 3, 4, 10, 12|6, 8, 9, 15, 17|11, . . .).
Becausew0 is constructedwith an increasing basewindow, any entryw0(b) that is equivalentmod

n to one of the short entries has the property that w0(c) > w0(b) for all c > b. Therefore, the only
inversions w0(a) > w0(b) for a < b in the complete notation occur between an entry w0(a) that is
equivalent mod n to a long entry with an entryw0(b) that is equivalent mod n to a short entry. Hence,
w0 is [321]-avoiding, from which it follows thatw0 is fully commutative by Theorem 2.3. �

We distinguish between two types of fully commutative elements through the position of the last
bead in its normalized abacus A. If the last bead occurs in a position i > 2n, then we call the element
a long element. Otherwise, the last bead occurs in a position n ≤ i ≤ 2n, and we call the element a
short element. As evidenced in Section 3, the long fully commutative elements have a nice structure
that allows for an elegant enumeration; the short elements lack this structure.

2.3. q-analogues of binomial coefficients

Calculations involving q-analogues of combinatorial objects often involve q-analogues of counting
functions. A few standard references on the subject are [1,13,27]. Define (a, q)n = (1 − a)(1 −
aq) · · · (1 − aqn−1) and (q)n = (q, q)n. The q-binomial coefficient

[ n
k

]
q (also called the Gaussian

polynomial) is a q-analogue of the binomial coefficient
( n
k

)
. To calculate a q-binomial coefficient

directly, we use the formula[n
k

]
q
=
(1− qn)(1− qn−1) · · · (1− qn−k+1)
(1− qk)(1− qk−1) · · · (1− q1)

=
(q)n

(q)k(q)n−k
. (2.1)

Just as with ordinary binomial coefficients, q-binomial coefficients have multiple combinatorial
interpretations and satisfy many identities, a few of which are highlighted below.

Interpretation 1 ([27, Proposition 1.3.17]). Let M be the multiset M = {1k, 2n−k}. For an ordering π of
the n elements of M, the number of inversions of π , denoted inv(π), is the number of instances of two
entries i and j such that i < j and π(i) > π(j). Then

[ n
k

]
q =

∑
π q
inv(π).
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Interpretation 2 ([27, Proposition 1.3.19]). Let Λ be the set of partitions λ whose Ferrers diagram fits
inside a k × (n − k) rectangle. Then

[ n
k

]
q =

∑
λ∈Λ q

|λ|, where |λ| denotes the number of boxes in the
diagram of λ.

Interpretation 3. Let
[ n
k

]
be the set of subsets of [n] = {1, 2, . . . , n} of size k. GivenR = {r1, . . . , rk} ∈[ n

k

]
, define |R| =

∑k
j=1(rj − j). Then

[ n
k

]
q =

∑
R∈[ nk ] q

|R|.

Proof. There is a standard bijection between the diagram of a partition λ drawn in English notation
inside an (n − k) × k rectangle and lattice paths of length n consisting of down and left steps that
contain k left steps. This bijection is given by tracing the lattice path formed by the boundary of the
partition λ from the upper right to the lower left corners of the bounding rectangle. We can obtain
another bijection to subsetsR = {r1, . . . , rk} ∈

[ n
k

]
by recording the index rj ∈ {1, 2, . . . , n} of the

horizontal steps of the path inR for each j = 1, . . . , k. Then, the number of boxes of λ that are added
in the column above each horizontal step is precisely (rj − j). Hence, Interpretation 3 follows from
transposing the Ferrers diagrams in Interpretation 2. �

Interpretation 1 is used most frequently in this article. Interpretation 3 is used in Section 3.1 when
counting long fully commutative elements.
The following identities follow directly from Eq. (2.1).

Identity 2.2.
[ n
k

]
q =

[ n
n−k

]
q
.

Identity 2.3. (1− qn−k)
[ n
k

]
q = (1− q

n)
[
n−1
k

]
q
.

3. Decomposition and enumeration of fully commutative elements

Let SFCn denote the set of fully commutative permutations in Sn. In the following result, Barcucci
et al. enumerate these elements by Coxeter length.

Theorem 3.1 ([3]). Let C(x, q) =
∑
n≥0

∑
w∈SFCn

xnq`(w). Then,

C(x, q) =

∑
n≥0
(−1)nxn+1q(n(n+3))/2/(x, q)n+1(q, q)n∑
n≥0
(−1)nxnq(n(n+1))/2/(x, q)n(q, q)n

.

This formula is a ratio of q-Bessel functions as described in [2]. It arises as the solution obtained by
[8] of a recurrence relation given on the generating function. We will encounter such a recurrence in
the proof of Lemma 3.12.
We enumerate the fully commutative elements w̃ ∈ S̃n by identifying each as the product of its

minimal length coset representative w0 ∈ S̃n/Sn and a finite permutation w ∈ Sn as described in
Section 2.2. Recall that we decompose the set of fully commutative elements into long and short
elements. The elements with a short abacus structure break down into those where certain entries
intertwine and those in which there is no intertwining. Whenwe assemble these cases, we obtain our
main theorem.

Theorem 3.2. Let S̃FCn denote the set of fully commutative affine permutations in S̃n, and let G(x, q) =∑
n≥0

∑
w∈̃SFCn

xnq`(w), where `(w) denotes the Coxeter length of w. Then,

G(x, q) =

(∑
n≥0

xnqn

1− qn

n−1∑
k=1

[n
k

] 2
q

)
+ C(x, q)+

(∑
R,L≥1

qR+L−1
[
L+ R− 2
L− 1

]
q
S(x, q)

)
,

where C(x, q) is given by Theorem3.1, and the component parts of S(x, q) = SI(x, q)+S0(x, q)+S1(x, q)+
S2(x, q) are given in Lemmas 3.8–3.10 and 3.12, respectively.
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The first summand of G(x, q) counts the long elements, while the remaining summands count the
short elements. This theorem will be proved in Section 3.3.

3.1. Long elements

In this section, we enumerate the long elements. Recall that the last bead in the normalized abacus
for these elements occurs in position> 2n.

Lemma 3.3. For fixed n ≥ 0, we have∑
w∈̃SFCn such that w is long

q`(w) =
qn

1− qn

n−1∑
k=1

[n
k

] 2
q
.

Proof. Fix a long fully commutative element, and define the set of long runners R of its normalized
abacus A to be the set of runners {r1, . . . , rk} ⊂ [n] \ {1} in which there exists a bead in position n+ rj
for 1 ≤ j ≤ k. We will enumerate the long fully commutative elements by conditioning on k = |R|,
the size of the set of long runners of its normalized abacus. Note that by Proposition 2.4, all subsets
R ⊂ [n] \ {1} are indeed the set of long runners for some fully commutative element.
For a fixedR, there is an infinite family of abaci {AR

i }i≥1, each having beads in positions n+ rj for
rj ∈ R, together with i additional beads that are placed sequentially in the long runners in positions
larger than 2n. See Fig. 1 for an example.
By Proposition 2.1, the Coxeter length of the minimal length coset representative w0 ∈ S̃n/Sn

having AR
i as its abacus is i(n− k)+

∑k
j=1(rj − j). In addition,w

0 has base window [aa · · · abb · · · b],
where the (n − k) numbers a are all at most n, and the k numbers b are all at least n + 2. The finite
permutationsw that can be applied to this standardwindowmay not invert any of the larger numbers
(b’s) without creating a [321]-pattern with n + 1 in the window following the standard window.
Similarly, none of the a’s can be inverted. All that remains is to intersperse the a’s and the b’s, keeping
track of how many transpositions are used. This contributes exactly

[ n
k

]
q to the Coxeter length, by

Interpretation 1 of
[ n
k

]
q.

Therefore, the generating function for the long fully commutative elements of S̃n by Coxeter length
is

n−1∑
k=1

[n
k

]
q

∑
i≥1

∑
R⊂[n]\{1}
|R|=k

q
i(n−k)+

k∑
j=1
(rj−j)

.

Taking the sum over i and incorporating a factor of q−k into the summation in the exponent of q yields

n−1∑
k=1

[n
k

]
q

qn

1− qn−k
∑

R⊂[n]\{1}
|R|=k

q

k∑
j=1
(rj−1−j)

.

Reindexing the entries rj to be from 1 to n− 1 instead of from 2 to n gives

n−1∑
k=1

[n
k

]
q

qn

1− qn−k
∑

R⊂[n−1]
|R|=k

q

k∑
j=1
(rj−j)

,

which simplifies by Interpretation 3 of the q-binomial coefficients to
n−1∑
k=1

[n
k

]
q

[
n− 1
k

]
q

qn

1− qn−k
.

Applying Identity 2.3 proves the desired result. �
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3.2. Short elements

The normalized abacus of every short fully commutative element has a particular structure. There
must be a gap in position n + 1, and for runners 2 ≤ i ≤ n, the lowest bead is either in position i or
n+ i. In the following arguments, we will assign a status to each runner, depending on the position of
the lowest bead in that runner.

Definition 3.4. An r-entry is a bead lying in some position > n. Let n + j be the position of the last
r-entry, or set j = n if there are no r-entries; an m-entry is a lowest bead lying in position i where
j + 1 ≤ i ≤ n. Note that it is possible that there do not exist any m-entries. The l-entries are the
remaining lowest beads in position i for i ≤ j. This assigns a status left, middle, or right to each entry
of the base window, depending on the position of the lowest bead in the corresponding runner. We
will call an abacus containing L l-entries,M m-entries, and R r-entries an (L)(M)(R) abacus.

Example 3.5. Fig. 2 shows the three (3)(1)(2) abaci. In each case, 6 is the uniquem-entry and 11 is an
r-entry. In the first abacus, the l-entries are {1, 3, 4} and the r-entries are {8, 11}.

The rationale for this assignment is that in the base window of a fully commutative element, not
of type (n)(0)(0), neither the l-entries nor the r-entries can have a descent amongst themselves,
respectively. To see this, consider the contrary where two r-entries have a descent. These two entries,
along with the n + 1 entry in the window following the standard window, form a [321]-instance.
Similarly, the last r-entry in thewindowprevious to the standardwindow togetherwith two l-entries
that have a descent in the standard window would form a [321]-instance.
When the normalized abacus of a short fully commutative element has no r-entries (and therefore

no m-entries), the base window for its minimal length coset representative is [12 · · · n]. That is, the
fully commutative elements of S̃n having this abacus are in one-to-one correspondence with fully
commutative elements of finite Sn. These elements have been enumerated in Theorem 3.1.
Fromnowon,we only concern ourselveswith (L)(M)(R) abaciwhere R > 0. Proposition 3.6 proves

that it is solely the parameters L, M , and R that determine the set of finite permutations that we
can apply to the minimal length coset representative, and not the exact abacus. In Proposition 3.7
we determine the cumulative contribution to the Coxeter length of the minimal length coset
representative from all (L)(M)(R) abaci for fixed L,M , and R.

Proposition 3.6. Let w01, w
0
2 ∈ S̃n/Sn, each corresponding to an (L)(M)(R) abacus for the same L, M, and

R with R > 0. For any finite permutation w ∈ Sn, w01w is fully commutative in S̃n if and only if w
0
2w is

fully commutative in S̃n.

Proof. For v ∈ S̃n and i ∈ Z, we will say that v(i) has the same left, middle, or right status as the entry
v(i mod n) of the base window, as in Definition 3.4. Observe that (w01w)(i) has the same left, middle,
or right status as (w02w)(i) for all 1 ≤ i ≤ n, and that the relative order of these entries is the same
forw01w as forw

0
2w.

Next, suppose thatw01w has a [321]-instancewith two inverted l-entries or two inverted r-entries.
By construction, these entries must occur in the same window j. Then any r-entry fromwindow j− 1
yields a [321]-instance inw02w, and such an entry exists since we are assuming that R > 0. Similarly,
if the [321]-instance has two inverted r-entries occurring in window j, then any l-entry fromwindow
j+ 1 yields a [321]-instance inw02w, and such an entry exists since 1 is always an l-entry in the base
window. Hence,w02w is not fully commutative by Theorem 2.3.
Next, suppose thatw01w has a [321]-instance that includes twom-entries, at least one of which lies

in window j. Observe that every m-entry in window j is larger than every entry in window j− 1, and
smaller than every entry in window j+1. Therefore, if the [321]-instance involves twom-entries then
the entire [321]-instancemust occur within window j, which implies thatw is not fully commutative.
Thus,w02w is not fully commutative.
Finally, ifw01w has a [321]-instance that includes one r-entry, onem-entry, and one l-entry, then all

three of these entries must lie in the samewindow. Hence, neitherw norw02w are fully commutative.
Thus, we have shown that the result holds in all cases. �
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Fig. 2. The three (3)(1)(2) abaci and Coxeter length of their corresponding minimal length coset representatives.

Proposition 3.7. Let L, M and R > 0 be fixed. Then, we have∑
w

q`(w) = qL+R−1
[
L+ R− 2
L− 1

]
q

where the sum on the left is over all minimal length coset representativesw having an (L)(M)(R) abacus.

Proof. Every (L)(M)(R) abacus contains beads in all positions through n and in position 2n − M as
well as gaps in position n+ 1 and all positions starting with 2n−M + 1. Depending on the positions
of the L − 1 remaining gaps (and R − 1 remaining beads), the Coxeter length of the minimal length
coset representative changes as illustrated by example in Fig. 2.
The minimal length coset representative corresponding to an (L)(M)(R) abacus having beads in

positions i for n + 2 ≤ i ≤ n + R together with a bead at position 2n − M , and gaps in positions i
for n + R + 1 ≤ i ≤ 2n − M − 1 has Coxeter length L + R − 1. Notice that every time we move a
bead from one of the positions between n + 2 and 2n − M − 1 into a gap in the position directly to
its right, the Coxeter length increases by exactly one. In essence, we are intertwining one sequence
of length L − 1 and one sequence of length R − 1 and keeping track of the number of inversions we
apply. By q-binomial Interpretation 1, the contribution to the Coxeter length of the minimal length
coset representatives corresponding to the (L)(M)(R) abaci is qL+R−1

[
L+R−2
L−1

]
q
. �

For the remaining arguments, we ignore the exact entries in the base window and simply fix both
some positive number L of l-entries and some positive number R of r-entries, and then enumerate
the permutations w ∈ Sn that we can apply to a minimal length coset representative w0 with base
window of the form [l · · · lm · · ·mr · · · r]. In Theorem 3.2, we sum the contributions over all possible
values of L and R.

3.2.1. Short elements with intertwining
One possibility is that after w ∈ Sn is applied to our minimal length coset representative w0 with

base window of the form [l · · · lm · · ·mr · · · r], an r-entry lies to the left of an l-entry. In this case,
we say that w is intertwining, the l-entries are intertwining with the r-entries, and that the interval
between the leftmost r and the rightmost l inclusive is the intertwining zone.

Lemma 3.8. Fix L and R > 0. Then, we have

SI(x, q) =
∑
w

xn(w)q`(w) =
∑
M≥0

xL+M+R
R−1∑
ρ=0

L−1∑
λ=0

M∑
µ=0

qQ
[
M
µ

]
q

×

[
L− λ− 1+ µ

µ

]
q

[
λ+ ρ

λ

]
q

[
M − µ+ R− ρ − 1

M − µ

]
q
,

where the sum on the left is over allw ∈ S∞ that are intertwining and apply to a short (L)(M)(R) abacus
for some M, and Q = (λ+ 1)(µ+ 1)+ (ρ + 1)(M − µ+ 1)− 1.

Proof. By Theorem 2.3, there are no m-entries between the leftmost r and the rightmost l, because
this would create a [321]-pattern. So the m-entries only occur before the leftmost r and after the
rightmost l.
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Fig. 3. The structure of the base window of an intertwined short fully commutative element. The leftmost r and the rightmost
l are underlined.

Fig. 4. The structure of the base window of a non-intertwined short fully commutative element. The rightmost l and the
leftmost r are underlined.

Notice that any descent in the m-entries before the leftmost rwould create a [321]-pattern when
coupledwith the rightmost l. Similarly, any descent in them-entries after the rightmost lwould create
a [321]-patternwhen coupledwith the leftmost r. Therefore, them-entries are allowed to have atmost
one descent, which must occur between the m-entries on either side of the intertwining zone.
From this, we know that the structure of w0w is as follows. Some number λ + 1 of l-entries are

intertwining with some number ρ + 1 of r-entries in the intertwining zone. The remaining l-entries
are intertwining with some number µ of m-entries on the left side of the intertwining zone, and the
remaining r-entries are intertwining with (M − µ) m-entries on the right side of the intertwining
zone. This structure is illustrated in Fig. 3.
The contribution to the Coxeter length generating function from splitting the M-entries into two

sets of size µ and M − µ, and transposing as necessary in order to place the first set on the left and
the right set on the right is

[
M
µ

]
q
by Interpretation 1.

Once these entries have been ordered in the minimal length configuration that conforms to
the structure shown in Fig. 3, we compute the Coxeter length offset Q by counting the remaining
inversions among the entries in the basewindow.We haveµm-entries invertedwith (λ+1)l-entries,
and (ρ+1) r-entries inverted with (M−µ)m-entries. In addition, the leftmost r is inverted with λ l-
entries not including the rightmost l, and the rightmost l is inverted with ρ r-entries not including
the leftmost r. Finally, the leftmost r is inverted with the rightmost l. These inversions contribute
Q = µ(λ+ 1)+ (M − µ)(ρ + 1)+ λ+ ρ + 1 to the Coxeter length.
Lastly, we can intertwine the (L− λ− 1) l-entries and µm-entries to the left of the zone, the λ l-

entries and ρ r-entries in the zone, and the (M − µ) m-entries with the (R − ρ − 1) r-entries to the
right of the zone. This proves the formula. �

3.2.2. Short elements without intertwining
If the l-entries and r-entries are not intertwined, there may be m-entries lying between the

rightmost l and the leftmost r. There can be no descents in them-entries to the left of the rightmost l
nor to the right of the leftmost r by the same reasoning as above. However,multiple descentsmay now
occur among them-entries. This structure is illustrated in Fig. 4. We enumerate these short elements
without intertwining by conditioning on the number of descents that occur among the m-entries.
Lemmas 3.9, 3.10 and 3.12 enumerate the short elements in which there are zero, one, or two or more
descents among the m-entries, respectively.

Lemma 3.9. Fix L and R > 0. Then, we have

S0(x, q) =
∑
w

xn(w)q`(w) =
∑
M≥0

xL+M+R
M∑
µ=0

qµ
[
L− 1+ µ

µ

]
q

[
R+M − µ
M − µ

]
q
,

where the sum on the left is over all w ∈ S∞ that are not intertwining, have no descents among the m-
entries, and apply to a short (L)(M)(R) abacus for some M.

Proof. Letµ be the number ofm-entries lying to the left of the rightmost l. Then, theµm-entries can
be intertwined with the remaining (L − 1) l-entries, and the remaining (M − µ) m-entries can be
intertwined with the R r-entries.
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We compute the Coxeter length offset by counting the inversions among the entries in the base
window in the minimal length configuration of this type. In this case, there are simply µ m-entries
that are inverted with the rightmost l. Summing over all valid values of µ gives the formula. �

Lemma 3.10. Fix L and R > 0. Then, we have

S1(x, q) =
∑
w

xn(w)q`(w) =
∑
M≥0

xL+M+R
M−1∑
µ=1

([
M
µ

]
q
− 1

)[
L+ µ
µ

]
q

[
R+M − µ
M − µ

]
q
,

where the sum on the left is over all w ∈ S∞ that are not intertwining, have exactly one descent among
the m-entries, and apply to a short (L)(M)(R) abacus for some M.

Proof. Consider such permutations having a descent at theµthm-entry. The choices for them-entries
that are not the identity permutation are enumerated by

[
M
µ

]
q
− 1 by Interpretation 1. Then, the m-

entries to the left of the descent can be intertwined with the l-entries, and the m-entries to the right
of the descent can be intertwined with the r-entries. Summing over all valid values of µ gives the
formula. �

To prepare for the proof of our next result, we recall the following lemma which solves certain
generating function recurrences.

Lemma 3.11 ([8, Lemma 2.3]). Let A be the sub-algebra of the formal power series algebra
R[[s, t, x, y, q]] formed with series S such that S(1, t, x, y, q) and S ′(1, t, x, y, q) are well defined in
R[[t, x, y, q]]. Moreover, we abbreviate f (s, t, x, y, q) ∈ A by f (s). Let X(s, t, x, y, q) be a formal power
series inA. Suppose that

X(s) = xe(s)+ xf (s)X(1)+ xg(s)X(sq)

where e, f , and g are inA. Then, X(s, t, x, y, q) is equal to

E(s)+ E(1)F(s)− E(s)F(1)
1− F(1)

where

E(s) =
∑
n≥0

xn+1g(s)g(sq) · · · g(sqn−1)e(sqn) and

F(s) =
∑
n≥0

xn+1g(s)g(sq) · · · g(sqn−1)f (sqn).

We are now in a position to enumerate the remaining elements.

Lemma 3.12. Fix L and R > 0. Then, we have

S2(x, q) =
∑
w

xn(w)q`(w) = xL+R
∑
i,j≥1

[
L+ i
L

]
q

[
R+ j
R

]
q
di,j(x, q),

where the sum on the left is over all w ∈ S∞ that are not intertwining, have at least two descents among
the m-entries, and apply to a short (L)(M)(R) abacus for some M. Here, di,j(x, q) is the coefficient of z isj
in the generating function that satisfies the functional equation

D(x, q, z, s) =

∑
n≥0
xn+1

n−1∑
i=1

([ n
i

]
q − 1

)
z i
(
(qs)− (qs)n−i

)
(1− qs)(1− xs)

+
xqs
(
D(x, q, z, 1)− D(x, q, z, qs)

)
(1− qs)(1− xs)

and whose solution is given explicitly below.
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Proof. In this proof, we use the ideas of Barcucci et al. [3], Bousquet-Mélou [8], and West [33], to
investigate the structure of the permutations restricted to the m’s in the base window.
For such a finite permutationw ∈ SM , we consider the following statistics:
• n(w) is the size of the element (represented by variable x),
• `(w) is the number of inversions (represented by variable q),
• i(w) is the number of entries to the left of the leftmost descent (represented by variable z), and
• j(w) is the number of entries to the right of the rightmost descent (represented by variable s).

Let

D(x, q, z, s) =
∑
w

xn(w)q`(w)z i(w)sj(w)

where we sum over all fully commutative permutations with at least two descents.
We require the auxiliary function N(x, q, z, s) =

∑
w x
n(w)q`(w)z i(w)sj(w) where we sum over all

fully commutative permutations w ∈ Sn with at least two descents such that removing the largest
entry from the one-line notation of w results in a permutation that has only one descent. Then, the
permutations counted by N(x, q, z, s) are generated from fully commutative permutations w′ with
exactly one descent by inserting the entry n(w′)+1 into the one-line notation ofw′ at someposition to
the right of the existing descent in order to avoid creating a [321]-instance, and this creates the second
descent. Ifwe fix the existing descent to occur at entry i, then the fully commutative permutationswith
exactly one descent contribute

[ n
i

]
q− 1 to N(x, q, z, s). Let k denote the number of entries ofw to the

right of the positionwhere we insert entry n+1. As k runs from 1 to n− i−1, we have that n increases
by 1, the Coxeter length l increases by k, there are i entries to the left of the leftmost descent, and k
entries to the right of the rightmost descent. Therefore,

N(x, q, z, s) =
∑
n≥0

n−1∑
i=1

xn+1
([n
i

]
q
− 1

)
z i
n−i−1∑
k=1

qksk

=

∑
n≥0

n−1∑
i=1

xn+1
([n
i

]
q
− 1

)
z i
(qs)− (qs)n−i

1− qs
.

We remark that x divides N(x, q, z, s).
Next, we have

D(x, q, z, s) = N(x, q, z, s)+
∑
w

(
j(w)∑
k=1

(
xn(w)+1q`(w)+kz i(w)sk

)
+ xn(w)+1q`(w)z i(w)sj(w)+1

)
where the leftmost sum is over all fully commutative permutations with at least two descents. This
sum counts such permutations that are obtained by inserting entry n(w)+1 into the one-line notation
of an existing fully commutative permutationw having at least two descents, and such that n(w)+ 1
is inserted into a position to the right of the rightmost descent. The rightmost term corresponds to
inserting into the rightmost position in the one-line notation, while the sum from k = 1 to j(w)
corresponds to inserting into the remaining positions in the one-line notation from right to left.
This formula expresses a recursive construction of the permutations we are counting, known as the
generating tree.
Hence,

D(x, q, z, s) = N(x, q, z, s)+
xqs
1− qs

(
D(x, q, z, 1)− D(x, q, z, qs)

)
+ xsD(x, q, z, s),

and therefore,

D(x, q, z, s) =
N(x, q, z, s)
1− xs

+
xqs

(1− qs)(1− xs)
D(x, q, z, 1)+

−xqs
(1− qs)(1− xs)

D(x, q, z, qs).

This functional equation has exactly the same form as those discussed in [8]; applying Lemma 3.11
proves that
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D(x, q, z, s) =
E(x, q, z, s)+ E(x, q, z, 1)F(x, q, z, s)− E(x, q, z, s)F(x, q, z, 1)

1− F(x, q, z, 1)
,

where

E(x, q, z, s) =
∑
n≥0

xn+1
−qs

(1− qs)(1− xs)
· · ·

−qns
(1− qns)(1− xqn−1s)

N(x, q, z, sqn)/x
1− xqns

and

F(x, q, z, s) =
∑
n≥0

xn+1
−qs

(1− qs)(1− xs)
· · ·

−qns
(1− qns)(1− xqn−1s)

qn+1s
(1− qn+1s)(1− xqns)

.

Condensing these formulas,

E(x, q, z, s) =
∑
n≥0

(−1)n(sx)nq
(
n+1
2

)
(qs, q)n(xs, q)n+1

N(x, q, z, sqn) and

F(x, q, z, s) =
∑
n≥0

(−1)n(sx)n+1q
(
n+2
2

)
(qs, q)n+1(xs, q)n+1

.

The coefficient di,j(x, q) of z isj in D(x, q, z, s) enumerates the permutations applied to the m’s in
the base window of all sizes and lengths such that there are at least two descents and the leftmost
descent is after i entries and the rightmost descent is before j entries. Intertwining the l-entries
with the first i m-entries and intertwining the r-entries with the last j m-entries gives the desired
result. �

3.3. Proof of the main theorem

In this section, we complete the proof of our main result.

Proof of Theorem 3.2. Partition the set of fully commutative elements w̃ into long elements and
short elements. The long elements in S̃n are enumerated by Lemma 3.3; we must sum over all
n.
Each short element w̃ has a normalized abacus of type (L)(M)(R) for some L,M , and R. When this

abacus is of type (n)(0)(0) for some n, the base window for the corresponding minimal length coset
representative is [1 2 . . . n]. These elements w̃ ∈ S̃FCn are therefore in one-to-one correspondence
with elements of SFCn . Therefore, the generating function C(x, q) enumerates these elements for all n.
The elements that remain to be enumerated are short elements with normalized abacus of type

(L)(M)(R) for R > 0. We enumerate these elements by grouping these elements into families based
on the values of L, M , and R. Decompose each element w̃ into the product of its minimal length
coset representative w0 and a finite permutation w. Proposition 3.6 proves that for two minimal
length coset representativesw01 andw

0
2 of the same abacus type, the set of finite permutationsw that

multiply to form a fully commutative element is the same. Proposition 3.7 proves that in an (L)(M)(R)-
family of fully commutative elements, the contribution to the length from the minimal length coset
representatives is qL+R−1

[
L+R−2
L−1

]
q
. What remains to be determined is the generating function for the

contributions of the finite permutationsw.
In an (L)(M)(R)-family of fully commutative elements, the finite permutations w might

intermingle the l entries and the r entries of the base window in which case there is at most one
descent among the m entries at a prescribed position; the contribution of such w is given by SI in
Lemma 3.8. Otherwise, there is no intermingling and the finite permutationswmay induce zero, one,
or two or more descents among the m entries; these cases are enumerated by generating functions
S0, S1, and S2 in Lemmas 3.9, 3.10 and 3.12, respectively. In each of these lemmas, the values for L and
R are held constant as M varies. Summing the product of the contributions of the minimal length
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coset representatives and the finite permutations over all possible values of L and R completes the
enumeration. �

4. Numerical conclusions

Theorem 3.2 allows us to determine the length generating function fn(q) for the fully commutative
elements of S̃n as n varies. The first few series fn(q) are presented below.

f3(q) = 1+ 3q+ 6q2
+ 6q3

+ 6q4
+ · · ·

f4(q) = 1+ 4q+ 10q2 + 16q3
+ 18q4

+ 16q5
+ 18q6

+ · · ·

f5(q) = 1+ 5q+ 15q2 + 30q3 + 45q4 + 50q5
+ 50q6

+ 50q7
+ 50q8

+ 50q9
+ · · ·

f6(q) = 1+ 6q+ 21q2 + 50q3 + 90q4 + 126q5 + 146q6 + 150q7
+ 156q8

+ 152q9

+ 156q10
+ 150q11

+ 158q12
+ 150q13

+ 156q14
+ 152q15

+ · · ·

f7(q) = 1+ 7q+ 28q2 + 77q3 + 161q4 + 266q5 + 364q6 + 427q7 + 462q8 + 483q9

+ 490q10
+ 490q11

+ 490q12
+ 490q13

+ 490q14
+ 490q15

+ · · ·

f8(q) = 1+ 8q+ 36q2 + 112q3 + 266q4 + 504q5 + 792q6 + 1064q7 + 1274q8 + 1416q9

+ 1520q10 + 1568q11 + 1602q12 + 1600q13
+ 1616q14

+ 1600q15
+ 1618q16

+ 1600q17
+ 1616q18

+ 1600q19
+ 1618q20

+ · · ·

f9(q) = 1+ 9q+ 45q2 + 156q3 + 414q4 + 882q5 + 1563q6 + 2367q7 + 3159q8 + 3831q9

+ 4365q10 + 4770q11 + 5046q12 + 5220q13 + 5319q14 + 5370q15 + 5391q16

+ 5400q17
+ 5406q18

+ 5400q19
+ 5400q20

+ 5406q21
+ 5400q22

+ 5400q23
+ · · ·

f10(q) = 1+ 10q+ 55q2 + 210q3 + 615q4 + 1452q5 + 2860q6 + 4820q7 + 7125q8

+ 9470q9 + 11622q10 + 13470q11 + 15000q12 + 16160q13 + 17030q14

+ 17602q15 + 18010q16 + 18210q17 + 18380q18 + 18410q19 + 18482q20

+ 18450q21
+ 18500q22

+ 18450q23
+ 18500q24

+ 18452q25
+ 18500q26

+ 18450q27
+ 18500q28

+ 18450q29
+ 18502q30

+ 18450q31
+ 18500q32

+ 18450q33
+ 18500q34

+ 18452q35
+ · · ·

f11(q) = 1+ 11q+ 66q2 + 275q3 + 880q4 + 2277q5 + 4928q6 + 9141q7 + 14850q8

+ 21571q9 + 28633q10 + 35453q11 + 41690q12 + 47135q13 + 51667q14

+ 55297q15 + 58091q16 + 60159q17 + 61622q18 + 62623q19 + 63272q20

+ 63668q21 + 63910q22 + 64031q23 + 64086q24 + 64119q25 + 64130q26

+ 64130q27
+ 64130q28

+ 64130q29
+ · · ·

f12(q) = 1+ 12q+ 78q2 + 352q3 + 1221q4 + 3432q5 + 8086q6 + 16356q7 + 28974q8

+ 45772q9 + 65670q10 + 87120q11 + 108690q12 + 129288q13 + 148170q14

+ 164776q15 + 178980q16 + 190680q17 + 200148q18 + 207444q19 + 213084q20

+ 217096q21 + 220098q22 + 222012q23 + 223458q24 + 224172q25 + 224814q26

+ 224992q27 + 225276q28 + 225216q29 + 225408q30 + 225264q31
+ 225420q32

+ 225280q33
+ 225414q34 + 225264q35 + 225438q36

+ 225264q37
+ 225414q38

+ 225280q39
+ 225420q40

+ 225264q41
+ 225432q42

+ 225264q43
+ 225420q44

+ 225280q45 + 225414q46
+ 225264q47

+ 225438q48

+ 225264q49
+ 225414q50 + · · · .

One remarkable quality of these series is their periodicity, given by the bold-faced terms. This
behavior is explained by the following corollary to Lemma 3.3.

Corollary 4.1. The coefficients ai of fn(q) =
∑

w∈̃SFCn
q`(w) =

∑
i≥0 aiq

i are periodic with period m|n for
sufficiently large i. When n = p is prime, the period m = 1 and in this case there are precisely
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1
p

((
2p
p

)
− 2

)
fully commutative elements of length i in S̃p, when i is sufficiently large.

Proof. For a given n, the number of short fully commutative elements is finite. The formula for long
elements in Lemma 3.3 is a polynomial divided by 1 − qn. Hence, the coefficients of this generating
function satisfy ai+n = ai, by a fundamental result on rational generating functions.
We have a factor of (1− qn) = (1− q)(1+ q+ · · ·+ qn−1) in the numerator of

[ n
k

]
q and when n is

prime, (1+ q+ · · · + qn−1) is irreducible. Therefore
[ n
k

]
q contains a factor of (1+ q+ · · · + q

n−1) for
every k between 1 and n − 1. Factoring one copy out of the sum in the expression of Lemma 3.3 and
canceling with the same factor in the denominator of qn

1−qn leaves a denominator of (1− q).
Hence, we have that

P(q) :=
qn

1+ q+ · · · + qn−1

n−1∑
k=1

[n
k

] 2
q

is the polynomial numerator of the rational generating function P(q)/(1− q) for the number of long
fully commutative elements. Therefore, when i is larger than the degree of P(q), the coefficient of qi
in the series expansion of P(q)/(1− q) is P(1). After substituting q = 1 and applying Vandermonde’s
identity,

P(1) =
1
n

n−1∑
k=1

(n
k

)2
=
1
n

(
n∑
k=0

(n
k

)2
− 2

)
=
1
n

((
2n
n

)
− 2

)
,

as desired. �

The distinction between long and short elements allows us to enumerate the fully commutative
elements efficiently. In some respects, this division is not the most natural in that the periodicity of
the above series begins before there exist no more short elements. Experimentally, it appears that
the periodicity begins at 1+

⌊
(n− 1)/2

⌋⌈
(n− 1)/2

⌉
; whereas, we can prove that the longest short

element has length 2
⌊
n/2

⌋⌈
n/2

⌉
.

We begin by bounding the Coxeter length of finite fully commutative permutations.

Definition 4.2. Ifw has a unique left descent andw has a unique right descent, then we say thatw is
bi-Grassmannian.

Lemma 4.3. Suppose w is a reduced expression for w ∈ SFCn . Then there exists a bi-Grassmannian
permutation x with reduced expression x = uwv. In particular, `(w) ≤

⌊
n/2

⌋⌈
n/2

⌉
.

Proof. Recall the coalesced heap diagram from [6, Section 3] associated to any fully commutative
elementw. This diagram is an embedding of the Hasse diagram of the heap poset defined in [28] into
Z2. In this diagram, an entry of the heap poset represented by (x, y) ∈ Z2 is labeled by the Coxeter
generator si if and only if x = i. Moreover, we have that a generator represented by (x, y) covers a
generator represented by (x′, y′) in the heap poset if and only if y = y′ + 1 and x = x′ ± 1. See
[6, Remark 5] for details. An example of a heap diagram is shown in Fig. 5.
Next, we describe a sequence of length-increasing multiplications on the left and right that will

transform w into a bi-Grassmannian permutation. An example of this construction is illustrated in
Fig. 6. First, if there are any columns 1 ≤ i ≤ (n− 1) in the heap diagram ofw that do not contain an
entry, then multiply on the right by si to add an entry to the heap diagram, and then recoalesce the
heap diagram. Henceforth, we assume that every column in the heap diagram of w has at least one
entry. Moreover, it follows from [6, Lemma 1] that columns 1 and (n−1) of the heap diagram contain
precisely one entry.
Next, consider the ridgeline in the heap diagram of w consisting of the points that correspond to

maximal elements in the heap poset. By construction, the ridgeline can be interpreted as a lattice path
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Fig. 5. The heap diagram of a bi-Grassmannian permutationw = s3s2s4s1s3s5s2s4s6s3s5s4 .

Fig. 6. The construction of a bi-Grassmannian permutation containingw = s2s4s1s5s6 .

consisting of up-steps of the form
(
(i, y), (i+1, y+1)

)
and down-steps of the form

(
(i, y), (i+1, y−1)

)
.

For each sequence of the form
(
(i, y), (i + 1, y − 1), (i + 2, y)

)
, we multiply on the right by an si+1

generator to add a new entry to the ridgeline and transform the sequence from down–up to up–down.
Whenwehave performed thesemultiplications until there are nomore down–up sequences along the
ridgeline, our heap diagram encodes a fully commutative permutation with a unique right descent.
In a completely similar fashion, we can also perform multiplications on the left to produce a heap
which encodes a fully commutative permutation with a unique left descent. Hence, our transformed
permutation is bi-Grassmannian.
When w is bi-Grassmannian, the heap of w forms a quadrilateral by [6, Lemma 1] as illustrated

in Fig. 5. The Coxeter length of w is the number of lattice points in the quadrilateral, and this is
maximized when the unique left and right descents occur as close to n/2 as possible. Hence, `(w) ≤⌊
n/2

⌋⌈
n/2

⌉
. �

Proposition 4.4. Let w ∈ S̃FCn be a short element. Then `(w) ≤ 2
⌊
n/2

⌋⌈
n/2

⌉
. In addition, there exists a

w ∈ S̃FCn with length 2
⌊
n/2

⌋⌈
n/2

⌉
.

Proof. Let w̃ ∈ S̃FCn be a short element. Then, by the parabolic decomposition, w̃ = w0w where
w ∈ SFCn andw

0 is a minimal length coset representative with an associated (L)(M)(R) abacus.
First, we determine the values of L, M , and R that give w0 ∈ S̃n/Sn of longest Coxeter length. For

fixed L, M , and R, Proposition 2.1 implies that the longest Coxeter length of a minimal length coset
representative having an (L)(M)(R) abacus occurs when there are gaps in positions n + 1 through
n+ L, beads in positions n+ L+ 1 through n+ L+ R and gaps in positions n+ L+ R+ 1 through 2n.
The length of this minimal length coset representative is LR, which is maximized whenM = 0 and L
and R are as close to n/2 as possible. Therefore, `(w0) ≤

⌊
n/2

⌋⌈
n/2

⌉
and is exactly equal in the case

wherew0 =
[
1, 2, . . . , bn/2

⌋
, n+ bn/2

⌋
+ 1, . . . , 2n

]
.

Considering the other factor w ∈ SFCn , it follows from Lemma 4.3 that `(w) ≤
⌊
n/2

⌋⌈
n/2

⌉
.

Moreover, this length is maximized when w is a bi-Grassmannian permutation with left and right
descents occurring as close to n/2 as possible.
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Adding the bounds to obtain `(w̃) = `(w)+ `(w0) ≤ 2
⌊
n/2

⌋⌈
n/2

⌉
proves the result. In addition,

the one-line notation for a bi-Grassmannian permutation has the form [i+1, i+2, . . . , n, 1, 2, . . . , i]
for some i. When i = bn/2

⌋
, this bi-Grassmannian applies directly to the above affine permutation

to give the fully commutative affine permutation
[
n+ bn/2

⌋
+ 1, . . . , 2n, 1, 2, . . . , bn/2

⌋]
of length

2
⌊
n/2

⌋⌈
n/2

⌉
. �

Corollary 4.1 and Proposition 4.4 give another way to compute the series fn(q), without invoking
Theorem 3.2. Using a computer program, one needs simply to count the fully commutative elements
of S̃n of length up to n+ 2

⌊
n/2

⌋⌈
n/2

⌉
.

5. Further questions

In this work, we have studied the length generating function for the fully commutative affine
permutations. It would be interesting to explore the ramifications of the periodic structure of these
elements in terms of the affine Temperley–Lieb algebra. Also, all of our work should have natural
extensions to the other Coxeter groups. In fact, we know of no analogue of [3] enumerating the
fully commutative elements by length for finite types beyond type A. It is a natural open problem
to establish the periodicity of the length generating functions for the other affine types. It would also
be interesting to determine the analogues for other types of the q-binomial coefficients and q-Bessel
functions that played prominent roles in our enumerative formulas.
Finally, it remains an open problem to prove that the periodicity of the length generating function

coefficients for fixed rank begins at length 1 +
⌊
(n − 1)/2

⌋⌈
(n − 1)/2

⌉
, as indicated by the

data. By examining the structure of the heap diagrams associated to the fully commutative affine
permutations, we have discovered some plausible reasoning indicating this tighter bound, but a proof
remains elusive.
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