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systems are obtained analytically in the case of sufficiently large time scale separation.

∗This work was partially supported by the NSF grant 1025422, the NSFC grants 11271290 and 11271013,
and the Office of Naval Research under the grant N00014-12-1-0257.

1

http://arxiv.org/abs/1212.4216v2


To illustrate this dimension reduction procedure, the impact of random environmental
fluctuations on the settling motion of inertial particles in a cellular flow field is ex-
amined. It is found that noise delays settling for some particles but enhances settling
for others. A deterministic stable manifold is an agent to facilitate this phenomenon.
Overall, noise appears to delay the settling in an averaged sense.
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1 Introduction

Complex dynamical systems in science and engineering often involve multiple time scales,
such as slow and fast time scales, as well as uncertainty caused by noisy fluctuations. For ex-
ample, aerosol and pollutant particles, occur in various natural contexts (e.g., in atmosphere
and ocean coasts [2, 4, 8]) and engineering systems (e.g. spray droplets), are described by
coupled system of differential equations. Some particles move fast while others move slower,
and they are usually subject to random influences, due to molecular diffusion, environmental
fluctuations, or other small scale mechanisms that are not explicitly modeled [13]. Invariant
manifolds are geometric structures in state space that help describe dynamical behaviors of
dynamical systems. A slow manifold is a special invariant manifold, with an exponential
attracting property and with the dimension the same as the number of slow variables. The
reduced system on a slow manifold thus characterizes the long time dynamics in a lower
dimensional setting, facilitating geometric and numerical investigation.

Existence for slow manifolds of stochastic dynamical systems with slow-fast time scales
has been investigated recently [12, 7]. However, stochastic slow manifolds are difficult to de-
pict or visualize. Therefore, in this paper, we approximate these random geometric invariant
structures in the case of large time scale separation. We derive an asymptotic approxima-
tion for these stochastic manifolds, and illustrate the random slow manifold reduction by
considering the motion of aerosol particles in a random cellular fluid flow. The reduced slow
system, being lower dimensional, facilitates our understanding of particle settling.

We comment that approximations for individual solution paths (not a stochastic slow
manifold) for stochastic slow-fast systems have been well investigated [6, 3, 10]. Approxima-
tions for deterministic slow manifolds have also been considered [9, 11].

This paper is organized as follows. An approximation method for random slow manifolds
is considered in §2, and the dynamics of aerosol particles in a random flow field is investigated
in §3.
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2 Approximating random slow manifolds and dimen-

sion reduction

We first examine the existence of a random slow manifold for a slow-fast stochastic dynamical
system, then devise an approximation method for this slow manifold, and thus obtain a low
dimensional, reduced system for the evolution of slow dynamics.

We consider the following slow-fast system of stochastic differential equations (SDEs)

{

ẋ = Ax+ f(x, y), x ∈ R
n,

ẏ = 1
ε
By + 1

ε
g(x, y) + σ√

ε
Ẇt, y ∈ R

m.
(2.1)

Here A and B are respectively n × n and m × m matrices. The nonlinear functions f :
R
n × R

m → R
n and g : Rn × R

m → R
m are C1-smooth and Lipschitz continuous with

Lipschitz constants Lf and Lg, respectively. The parameter σ is a positive number and the
parameter ε > 0 is small (representing scale separation). The stochastic process {Wt : t ∈ R}
is a two-sided R

m-valued Wiener process. When f and g are locally Lipschitz but the system
has a bounded (i.e., in mean square norm) absorbing set, a useful trick is to cut-off the
nonlinearities to zero outside the absorbing set, so that the new system has global Lipscitz
nonlinearities and has the same long time random dynamics as the original system. The
existence of a random slow manifold for this system has been considered in [12] but we
adopt a method from our earlier work [7].

We recall the definition of a random dynamical system (RDS) in a probability space
(Ω,F ,P). Let θ = {θt}t∈R be a B(R)⊗F , F−measurable flow, i.e.,

θ : R× Ω → Ω, θ0 = idΩ, θt1 ◦ θt2 = θt1+t2 , for t1, t2 ∈ R.

Additionally, the measure P is supposed to be an invariant measure for θt, i.e. θtP = P, for
all t ∈ R. For a Wiener process driving system, we take Ω = C0(R,R

m) consisting of all
continuous sample paths of ω(t) on R with values in R

m and ω(0) = 0. On Ω, the flow θt is
given by the Wiener shift

θtω(·) = ω(·+ t)− ω(t), ω ∈ Ω, t ∈ R.

A measurable map ϕ : R+ × Ω× R
n+m → R

n+m is said to satisfy the cocycle property if

ϕ(0, ω, x) = x, ϕ(t+ s, ω, x) = ϕ(t, θsω, ϕ(s, ω, x)), for s, t ∈ R
+, ω ∈ Ω and x ∈ R

n+m.

A random dynamical system consists of a driving system θ and a measurable map with the
cocycle property.

3



Introduce a Banach Space Cλ as our working space for random slow manifolds. For λ > 0,
define

C1
λ =

{

ν : (−∞, 0] → Rn : ν is continuous and sup
t≤0

|eλtν(t)|Rn <∞
}

,

and
C2
λ =

{

ν : (−∞, 0] → Rm : ν is continuous and sup
t≤0

|eλtν(t)|Rm <∞
}

,

with the following norms respectively

|ν(t)|C1
λ
= sup

t≤0
|eλtν(t)|Rn ,

and
|ν(t)|C2

λ
= sup

t≤0
|eλtν(t)|Rm .

Let Cλ be the product Banach space Cλ := C1
λ × C2

λ, with the norm

|(X, Y )|Cλ
= |X|C1

λ
+ |Y |C2

λ
.

For matrices A and B, we make the following assumptions:

H1: There are constants α, β and K, satisfying −β < 0 ≤ α and K > 0, such that for
every x ∈ Rn and y ∈ Rm, the following exponential estimates hold:

|eAtx|Rn ≤ Keαt|x|Rn, t ≤ 0; |eBty|Rm ≤ Ke−βt|y|Rm, t ≥ 0.

H2: β > KLg.

In order to use the random invariant manifold framework [5], we transfer an SDE system
into a random differential equation (RDE) system. Introduce the following linear Langevin
system

dy =
B

ε
ydt+

σ√
ε
dWt. (2.2)

It is known [5] that the following process ηεσ(ω) is the stationary solution of the linear system
(2.2)

ηεσ(ω) =
σ√
ε

∫ 0

−∞
e−

B
ε
s dWs , σηε(ω).
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Moreover,

ηεσ(θtω) =
σ√
ε

∫ t

−∞
e

B
ε
(t−s) dWs , σηε(θtω).

Similarly, ησ(ω) is the stationary solution of the following linear SDE system

dy = Bydt+ σ dWt, (2.3)

with

ησ(ω) = σ

∫ 0

−∞
e−Bs dWs , ση(ω),

and

ησ(θtω) = σ

∫ t

−∞
eB(t−s) dWs , ση(θtω).

Denoting Wt(ψεω) , 1√
ε
Wtε(ω), which is also a Wiener Process [15], and has the same

distribution as Wt(ω), with ψε : Ω → Ω . Therefore, by a transformation s′ = s/ε at the
second equal sign and then omitting the prime in s′, we have

ηε(θtεω) =
1√
ε

∫ tε

−∞
eB(t− s

ε
) dWs =

∫ t

−∞
eB(t−s) d(

1√
ε
Wsε(ω)) = η(θtψεω), (2.4)

and

ηε(ω) =
1√
ε

∫ 0

−∞
e−B

s
ε dWs =

∫ 0

−∞
e−Bs d(

1√
ε
Wsε(ω)) = η(ψεω). (2.5)

Moreover, by defining s = u− t at the second equal sign below, we get

ηε(θtω) =
1√
ε

∫ t

−∞
e

B(t−u)
ε dWu =

1√
ε

∫ 0

−∞
e−

Bs
ε dWs = ηε(ω). (2.6)

The equations (2.4) and (2.5) indicate that ηε(θtεω) and ηε(ω) are identically distributed
with η(θtψεω) and η(ψεω), respectively. And by (2.6) and (2.5), ηε(θtω) and η(ψεω) have
the same distribution.

We then introduce a random transformation

(

X
Y

)

:= Vε(ω, x, y) =
(

x
y − σηε(ω)

)

, (2.7)
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where (x, y) satisfies system (2.1).
Then the SDE system (2.1) is transferred into the following RDE system,

{

Ẋ = AX + f(X, Y + σηε(θtω)), X ∈ R
n,

Ẏ = B
ε
Y + 1

ε
g(X, Y + σηε(θtω)), Y ∈ R

m.
(2.8)

By the variation of constants formula, this RDE system is further rewritten as

X(t) = etAX(0) +

∫ t

0

eA(t−s)f(X(s), Y (s) + σηε(θsω)) ds, (2.9)

Y (t) = eB
t−t′

ε Y (t′) +
1

ε

∫ t

t′
eB

t−s
ε g(X(s), Y (s) + σηε(θsω)) ds. (2.10)

As Y (·) ∈ C2
λ, we have the following estimation,

|eB t−t′

ε Y (t′)|Rm ≤ eβ
t′−t
ε |Y (t′)|Rm = eλt

′ |Y (t′)|Rme
t′(β−λε)−tβ

ε → 0, t′ → −∞,

for λ satisfying β − λε > 0.
Letting t′ → −∞, we get the expression of the RDE system (2.8),

X(t) = etAX(0) +

∫ t

0

eA(t−s)f(X(s), Y (s) + σηε(θsω)) ds, (2.11)

Y (t) =
1

ε

∫ t

−∞
eB

t−s
ε g(X(s), Y (s) + σηε(θsω)) ds. (2.12)

We rescale the time by letting τ = t/ε, from system (2.8) and by (2.4) we get,

X ′(τε) = ε
[

AX(τε) + f(X(τε), Y (τε) + ση(θτψεω))
]

, X ∈ R
n, (2.13)

Y ′(τε) = BY + g(X(τε), Y (τε) + ση(θτψεω)), Y ∈ R
m, (2.14)

where ′ = d
dτ
.

We can rewrite these as the integral form below,

X(τε) = X(0) + ε

∫ τ

0

[

AX(sε) + f(X(sε), Y (sε) + ση(θsψεω))
]

ds, (2.15)

Y (τε) =

∫ τ

−∞
eB(τ−s)g(X(sε), Y (sε) + ση(θsψεω)) ds. (2.16)
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2.1 Dimension reduction via a random slow manifold

We now recall some basic facts about random slow manifolds and dimension-reduced systems,
when the scale separation is sufficiently large.

A random set M(ω) = {(x, h(x, ω))|x ∈ R
n} is called a random slow manifold (a special

random inertial manifold) for the system (2.1), if it satisfies the following conditions [12]:
(i) M is invariant with respect to a random dynamical system ϕ, i.e.

ϕ(t, ω,M(ω)) ⊂ M(θtω) for t ≥ 0, ω ∈ Ω.

(ii) h(x, ω) is globally Lipschitz in x for all ω ∈ Ω and for any x ∈ R
n the mapping

ω → h(x, ω) is a random variable.
(iii) The distance of ϕ(t, ω, z) and M(θtω) tends to 0 with exponential rate, for z ∈ R

n+m,
as t tends to infinite.

A random slow manifold M, which is lower dimensional, retains the long time dynamics
of the original system (2.1), when ε is sufficiently small [7].

In [12], a random Hadamard graph transform was used to prove the existence of a random
inertial manifolds, here we use Lyapunov- Perron method to achieve our result as in [7].

Lemma 1. Assume that H1 and H2 hold and that there exists a λ such that β − λε > 0.
Then, for sufficiently small ε, there exists a random slow manifold M̃ε(ω) = (ξ, h̃ε(ξ, ω)) for
the random slow-fast system (2.8).

Proof. This proof is adapted from [7] for our finite dimensional setting. For completeness,
we include the essential part here. For a λ > 0, we use the Banach Space Cλ as defined in
the beginning of this section.
Denote a nonlinear mapping

T
(

(X, Y ), X(0), ω) =

{

etAX(0) +

∫ t

0

eA(t−s)f(X(s), Y (s) + σηε(θsω)) ds,

1

ε

∫ t

−∞
eB

t−s
ε g(X(s), Y (s) + σηε(θsω)) ds

}

.

Note that T is well-defined from R
n+m × R

n × Ω → R
n+m. We will show that for every

initial data X(0) = ξ ∈ R
n, (2.8) have a unique solution in Cλ. For (X, Y ), (X̄, Ȳ ) ∈ Cλ, we

have that

7



∣

∣

∣
T
(

(X, Y ), ξ, ω)− T
(

(X̄, Ȳ ), ξ, ω)
∣

∣

∣

Cλ

= sup
t≤0

eλt
∣

∣

∣

∫ t

0

eA(t−s)
[

f(X(s), Y (s) + σηε(θsω))− f(X̄(s), Ȳ (s) + σηε(θsω))
]

ds
∣

∣

∣

Rn

+ sup
t≤0

eλt
∣

∣

∣

1

ε

∫ t

−∞
eB

t−s
ε

[

g(X(s), Y (s) + σηε(θsω))− g(X̄(s), Ȳ (s) + σηε(θsω))
]

ds
∣

∣

∣

Rm

≤
∣

∣

∣
(X, Y )− (X̄, Ȳ )

∣

∣

∣

Cλ

sup
t≤0

{

e(λ+α)tKLf

∫ 0

t

e−(λ+α)s ds
}

+
∣

∣

∣
(X, Y )− (X̄, Ȳ )

∣

∣

∣

Cλ

sup
t≤0

{1

ε
e(λ−

β

ε
)tKLg

∫ t

−∞
e(

β

ε
−λ)s ds

}

≤
( KLf
α + λ

+
KLg
β − ελ

)

∣

∣

∣
(X, Y )− (X̄, Ȳ )

∣

∣

∣

Cλ

.

The first inequality is by H1 and the Lipschitz continuity of f and g, while the sec-
ond inequality comes from direct calculation. Taking λ = β−KLg

2ε
> 0, which satisfies

β − λε = β+KLg

2
> 0, we conclude that

∣

∣

∣
T
(

(X, Y ), ξ, ω
)

− T
(

(X̄, Ȳ ), ξ, ω
)

∣

∣

∣

Cβ−KLg
2ε

≤
( 2KLfε

2εα + β −KLg
+

2KLg
KLg + β

)

∣

∣

∣
(X, Y )− (X̄, Ȳ )

∣

∣

∣

Cβ−KLg
2ε

.

By the assumption H2, 2KLg

KLg+β
< 1, and

2KLfε

2εα+β−KLg
→ 0 as ε → 0. Therefore, for ε small

enough,
( 2KLfε

2εα+β−KLg
+ 2KLg

KLg+β

)

< 1. The contraction map theorem implies that for every

ξ ∈ R
n, T

(

(X, Y ), ξ, ω
)

has a fixed point (X(t), Y (t)) ∈ Cβ−KLg

2ε

which is the unique solution

of the differential equation system (2.8). Moreover, the fixed point has the property

∣

∣

∣
(X(·; ξ, ω), Y (·; ξ, ω))− (X(·; ξ̄, ω), Y (·; ξ̄, ω))

∣

∣

∣

Cβ−KLg
2ε

≤ K

1−
( 2KLfε

2εα+β−KLg
+ 2KLg

KLg+β

)

∣

∣

∣
ξ − ξ̄

∣

∣

∣

Rn
. (2.17)
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Denoting h̃ε(ξ, ω) = Y (0, ξ, ω), we obtain

h̃ε(ξ, ω) =
1

ε

∫ 0

−∞
e−B

s
εg(X(s), Y (s) + σηε(θsω)) ds, ξ ∈ R

n. (2.18)

With the help of inequality (2.17), we further have

∣

∣

∣
h̃ε(ξ, ω)− h̃ε(ξ̄, ω)

∣

∣

∣

Rm
≤ 2K2Lg
KLg + β

·
∣

∣ξ − ξ̄
∣

∣

Rn

1−
( 2KLfε

2εα+β−KLg
+ 2KLg

KLg+β

)
.

Thus, h̃ε is Lipschitz continuous. By the fact that (X(0), Y (0)) ∈ M̃ε(ω) if and only if there
exists (X, Y ) ∈ Cλ and satisfies (2.11) and (2.12), it follows that (X(0), Y (0)) ∈ M̃ε(ω) if
and only if there exists ξ ∈ R

n such that (X(0), Y (0)) = (ξ, h̃ε(ξ, ω)). Therefore, there exists
a random slow manifold

M̃ε(ω) = {(ξ, h̃ε(ξ, ω) | ξ ∈ R
n}.

By the random transformation (2.7) and noting that ηε(θtω) and η(ψεω) have the same
distribution, the dynamics on the slow manifold is now described by the following dimension-
reduced system in R

n (from equation (2.1) ), for ε sufficiently small:

ξ̇ = Aξ + f(ξ, ση(ψεω) + h̃ε(ξ, θtω)), ξ ∈ R
n. (2.19)

2.2 Approximation of a random slow manifold

We now approximate the slow manifolds for sufficiently small ε. Expand the solution of
system (2.14) as

Y (τε) = Y0(τ) + εY1(τ) + ε2Y2(τ) + · · · , (2.20)

and the initial conditions as

Y (0) = h̃ε(ξ, ω) = h̃(0)(ξ, ω) + εh̃(1)(ξ, ω) + · · · ,
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and X(0) = ξ ∈ R
n. With the help of (2.15) and (2.20), we have the expansions

f(X(τε), Y (τε) + ση(θτψεω)) = f(ξ, Y0(τ) + ση(θτψεω)) + fx(ξ, Y0(τ) + ση(θτψεω))

·ε
∫ τ

0

[

AX(sε) + f(X(sε), Y (sε) + ση(θsψεω))
]

ds

+fy(ξ, Y0(τ) + ση(θτψεω)) ·
[

εY1(τ) + · · ·
]

+ · · ·
= f(ξ, Y0(τ) + ση(θτψεω))

+fx(ξ, Y0(τ) + ση(θτψεω)) · ε
∫ τ

0

[

Aξ + f(ξ, Y0(s) + ση(θsψεω))
]

ds

+fy(ξ, Y0(τ) + ση(θτψεω)) · εY1(τ) + · · · ,
g(X(τε), Y (τε) + ση(θτψεω)) = g(ξ, Y0(τ) + ση(θτψεω))

+gx(ξ, Y0(τ) + ση(θτψεω)) · ε
∫ τ

0

[

Aξ + f(ξ, Y0(s) + ση(θsψεω))
]

ds

+gy(ξ, Y0(τ) + ση(θτψεω)) · εY1(τ) + · · · .

Inserting (2.20) into (2.14), expanding (2.14) and then matching the terms of the same power
of ε, we get

{

Y ′
0(τ) = BY0(τ) + g(ξ, Y0(τ) + ση(θτψεω)),

Y0(0) = h̃(0)(ξ, ω),
(2.21)

and











Y ′
1(τ) =

[

B + gy(ξ, Y0(τ) + ση(θτψεω))
]

Y1(τ)

+gx(ξ, Y0(τ) + ση(θτψεω))
{

Aτξ +
∫ τ

0
f(ξ, Y0(s) + ση(θsψεω)) ds

}

,

Y1(0) = h̃(1)(ξ, ω).

(2.22)

Solving the two equations for Y0(τ) and Y1(τ), we obtain

Y0(τ) = eBτ h̃(0)(ξ, ω) +

∫ τ

0

e−B(s−τ)g(ξ, Y0(s) + ση(θsψεω)) ds, (2.23)

10



and

Y1(τ) = eBτ+
∫ τ

0 gy(ξ,Y0(s)+ση(θsψεω)) dsh̃(1)(ξ, ω) +

∫ τ

0

e−B(s−τ)+
∫ τ

s
gy(ξ,Y0(r)+ση(θrψεω)) dr

·gx(ξ, Y0(s) + ση(θτψεω))
[

Asξ +

∫ s

0

(

f(ξ, Y0(r) + ση(θrψεω)) dr
]

ds.

(2.24)

With the help of (2.15) and (2.20), the expression (2.18) can be calculated as follows

h̃ε(ξ, ω) =
1

ε

∫ 0

−∞
e−B

s
εg(X(s), Y (s) + σηε(θsω)) ds

=

∫ 0

−∞
e−Bsg(X(sε), Y (sε) + ση(θsψεω)) ds

=

∫ 0

−∞
e−Bs

{

g(ξ, Y0(s) + ση(θsψεω)) + gx(ξ, Y0(s) + ση(θsψεω))ε
[

Asξ

+

∫ s

0

(

f(ξ, Y0(r) + ση(θrψεω)) dr
]

+ gy(ξ, Y0(s) + ση(θsψεω))εY1(s)
}

ds+O(ε2)

=

∫ 0

−∞
e−Bsg(ξ, Y0(s) + ση(θsψεω)) ds

+ε

∫ 0

−∞
e−Bs

{

gx(ξ, Y0(s) + ση(θsψεω))
[

Asξ +

∫ s

0

(

f(ξ, Y0(r) + ση(θrψεω))
)

dr
]

+gy(ξ, Y0(s) + ση(θsψεω))Y1(s)
}

ds+O(ε2).

To get the second equation, we used τ = s/ε and then used s to replace τ . Thus the zero and
first order terms in ε, of h̃ε in the random slow manifold Mε(ω) for (2.8), are respectively

h̃(0)(ξ, ω) =

∫ 0

−∞
e−Bsg(ξ, Y0(s) + ση(θsψεω)) ds, (2.25)

and

h̃(1)(ξ, ω) =

∫ 0

−∞
e−Bs

{

gx(ξ, Y0(s) + ση(θsψεω))
[

Asξ +

∫ s

0

f(ξ, Y0(r) + ση(θrψεω)) dr
]

+gy(ξ, Y0(s) + ση(θsψεω))Y1(s)
}

ds. (2.26)
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That is, the slow manifolds M̃ε(ω) = {(ξ, h̃ε(ξ, ω))} of (2.8) up to the order O(ε2) is repre-
sented by h̃ε(ξ, ω) = h̃(0)(ξ, ω) + εh̃(1)(ξ, ω) +O(ε2). This produces an approximation of the
random slow manifold.

Therefore, we have the following result.

Theorem 1 (Approximation of a random slow manifold). Assume that H1 and H2 hold and

assume that there is a λ such that β−λε > 0. Then, for sufficiently small ε, there exists a slow

manifold M̃ε(ω) = {(ξ, h̃ε(ξ, ω) | ξ ∈ R
n}, where h̃ε(ξ, ω) = h̃(0)(ξ, ω)+ εh̃(1)(ξ, ω)+ O(ε2)

with h̃(0)(ξ, ω) and h̃(1)(ξ, ω) expressed in (2.25) and (2.26), respectively.

With the approximated random slow manifold

ĥε(ξ, ω) = h̃(0)(ξ, ω) + εh̃(1)(ξ, ω), (2.27)

we obtain the following dimension-reduced approximate random system in R
n (from equation

(2.19) ), for ε sufficiently small:

ξ̇ = Aξ + f(ξ, ση(ψεω) + ĥε(ξ, θtω)), ξ ∈ R
n. (2.28)

3 Settling of inertial particles under random influences

For the motion of aerosol particles in a cellular flow field, Stommel once observed that,
ignoring particle inertial (ε = 0), some particles follow closed paths and are permanently
suspended in the flow. Rubin, Jones and Maxey [11] showed that any small amount inertial
(small ε > 0) will cause almost all particles to settle. Via a singular perturbation theory [9],
Jones showed the existence of an attracting slow manifold. By analyzing the equations of
motion on the slow manifold, especially heteroclinic orbits, they established the presence of
mechanisms that inhibit trapping and enhance settling of particles.

Let us now examine the motion of aerosol particles in a random cellular flow field, using
the slow manifold reduction technique developed in the previous section.

Consider a model for the motion of aerosol particles in a cellular flow field, under random
environmental influences [11]























ẏ1 = v1,

ẏ2 = v2,

v̇1 = −1
ε
v1 +

1
ε
a sin y1 cos y2 +

σ√
ε
Ẇ 1
t ,

v̇2 = −1
ε
v2 +

1
ε
(V − a cos y1 sin y2) +

σ√
ε
Ẇ 2
t ,

(3.1)
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where (y1, y2) and (v1, v2) are position and velocity, respectively, of a particle in the horizontal-
vertical plane (positive y2 axis points to the settling/gravitational direction), a is a velocity
scale, and V is the settling velocity in still fluid. Moreover, W 1

t ,W
2
t are independent scalar

Wiener processes, σ is a positive parameter, and ε is the inertial response time scale of the
particle. Note that (a sin y1 cos y2,−a cos y1 sin y2) is the so-called cellular flow field velocity
components (horizontal and vertical) on the domain (a ‘cell’) D , (0, π)× (0, π).

As in Section 2, this four dimensional SDE system can be converted to the following
RDE system



















ẏ1 = v1 + σηε1(θtω),

ẏ2 = v2 + σηε2(θtω),

v̇1 = −1
ε
v1 +

1
ε
a sin y1 cos y2,

v̇2 = −1
ε
v2 +

1
ε
(V − a cos y1 sin y2),

(3.2)

where

ηε1(θtω) =
1√
ε

∫ t

−∞
e

−1
ε
(t−s) dW 1

s , ηε2(θtω) =
1√
ε

∫ t

−∞
e

−1
ε
(t−s) dW 2

s .

Denoting y1(0) = ξ1 and y2(0) = ξ2, and we examine the motion of the particle (ξ1, ξ2). By
using (2.25) and (2.23), we get

h̃
(0)
1 (ξ, ω) =

∫ 0

−∞
esa sin ξ1 cos ξ2 ds = a sin ξ1 cos ξ2, h̃

(0)
2 (ξ, ω) = V − a cos ξ1 sin ξ2,

and
v10(t) = a sin ξ1 cos ξ2, v20(t) = V − a cos ξ1 sin ξ2.

13



Owing to (2.26),

h̃
(1)
1 (ξ1, ξ2, ω) =

∫ 0

−∞
es
[

a2s sin ξ1 cos ξ1 − aV s sin ξ1 sin ξ2 + a cos ξ1 cos ξ2 σ

∫ s

0

η1(θrψεω) dr

− a sin ξ1 sin ξ2 σ

∫ s

0

η2(θrψεω) dr
]

ds

= −a2 sin ξ1 cos ξ1 + aV sin ξ1 sin ξ2 + aσ cos ξ1 cos ξ2

∫ 0

−∞
ses dW 1

s

− aσ sin ξ1 sin ξ2

∫ 0

−∞
ses dW 2

s ,

h̃
(1)
2 (ξ1, ξ2, ω) = −a2 sin ξ2 cos ξ2 + aV cos ξ1 cos ξ2 + aσ sin ξ1 sin ξ2

∫ 0

−∞
ses dW 1

s

− aσ cos ξ1 cos ξ2

∫ 0

−∞
ses dW 2

s .

Therefore, from (2.19), the dynamics on the random slow manifold is described by the
following dimension-reduced system:

ξ̇1 = h̃1(ξ1, ξ2, ω) + ση1(ψεω)

= σ

∫ 0

−∞
es dW 1

s (ψεω) + a sin ξ1 cos ξ2 + ε
{

− a2 sin ξ1 cos ξ1 + aV sin ξ1 sin ξ2

+aσ cos ξ1 cos ξ2

∫ 0

−∞
ses dW 1

s − aσ sin ξ1 sin ξ2

∫ 0

−∞
ses dW 2

s

}

, (3.3)

ξ̇2 = h̃2(ξ1, ξ2, ω) + ση2(ψεω)

= σ

∫ 0

−∞
es dW 2

s (ψεω) + V − a cos ξ1 sin ξ2 + ε
{

− a2 sin ξ2 cos ξ2 + aV cos ξ1 cos ξ2

+aσ sin ξ1 sin ξ2

∫ 0

−∞
ses dW 1

s − aσ cos ξ1 cos ξ2

∫ 0

−∞
ses dW 2

s

}

. (3.4)
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3.1 Numerical simulation: First exit time and escape probability

Note that (ξ1, ξ2) is the particle position. For random slow manifold reduction, it is customary
to use a notation different from the original one (y1, y2). The positive ξ2 direction points
toward the bottom of the fluid.

In this section, we conduct numerical simulations for this reduced or slow system (3.3)-
(3.4). When ε = 0, σ = 0, this reduced system becomes the classical system for the motion
of particles in the cellular flow. When ε 6= 0, σ = 0 indicates no noise, while a non-zero σ
means noise is present.

Simulation Motivated by understanding the settling of particles as in [11], we first calcu-
late first exit time of particles, described by the random system (3.3)-(3.4), from the domain
D , (0, π)× (0, π) and then examine how particles, exit or escape the fluid domain D. To
this end, we introduce two concepts: First exit time and escape probability. The first exit
time is the time when a particle, initially at (ξ1, ξ2) ∈ D, first exits the domain D:

τ(ξ1, ξ2) , inf{t : (ξ1(t), ξ2(t)) /∈ D}.

Let Γ ⊂ ∂D be a subboundary. The escape probability PΓ(ξ1, ξ2), for a particle initially
at (ξ1, ξ2), through a subboundary Γ, is the likelihood that this particle first escapes the
domain D by passing through Γ. We will take Γ to be one of the four sides of the fluid
domain D. The escape probability of a particle through the top side Γ = {ξ2 = π} means
the likelihood that this particle settles directly to the bottom of the fluid (note that the
positive ξ2 direction points to the bottom of the fluid).

To compute the first exit time from the domain D, we place particles on a lattice of grid
points in D and on its boundary, and set a large enough threshold time T . As soon as a
particle reaches boundary of D, it is regarded as ‘having exited’ from D. If a particle leaves
D before T , then the time of leaving is taken as the first exit time, but if it is still in the
domain at time T , we take T as the first exit time. When a particle’s first exit time is T , we
can see it as trapped in the cell.

In order to calculate the escape probability of a particle under noise through a subbound-
ary Γ, one of the four sides of the domain, we calculate a large number, N , of paths for each
particle to see how many (say M) of them exit through the subboundary Γ, and then we
get the escape probability M

N
. We do this for particles placed on a lattice of grid points in

D and on its boundary. When a particle reaches or is on a side subboundary, it is regarded
as ‘having escaped through’ that part of the boundary.

15



0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

ξ
1

ξ 2

Figure 1: Phase portraits of the slow system (3.3)-(3.4) with V = 0, a = 0.7 and σ = 0 (no
noise): ε = 0 (top); ε = 0.05 (bottom).
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Figure 2: Sample particle orbits of the slow system (3.3) and (3.4) with V = 0.3 and a = 0.7:
ε = 0 and σ = 0 (top, no noise); ε = 0.05 and σ = 0 (middle, no noise); ε = 0.05 and σ = 0.01
(bottom, with noise).

17



(a) (b)

(c) (d)

Figure 3: First exit time for the slow system (3.3) and (3.4) with ε = 0.05, a = 0.7 and
σ = 0.01: (a) V = 0, (b) V = 0.1, (c) V = 0.5 and (d) V = 0.65.
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(a) (b)

(c) (d)

Figure 4: Escape probability for the slow system (3.3) and (3.4) with V = 0, ε = 0.05,
a = 0.7 and σ = 0.01: (a) escape through ξ2 = π (settling direction or physical bottom
boundary), (b) escape through ξ2 = 0 (physical top boundary), (c) escape through ξ1 = 0
(left boundary), and (d) escape through ξ1 = π (right boundary).
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(a) (b)

(c) (d)

Figure 5: Escape probability for the slow system (3.3) and (3.4) with V = 0.1, ε = 0.05,
a = 0.7 and σ = 0.01: (a) Escape through ξ2 = π (settling direction or physical bottom
boundary), (b) escape through ξ2 = 0 (physical top boundary), (c) escape through ξ1 = 0
(left boundary), and (d) escape through ξ1 = π (right boundary).
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(a1) (a2)

(c1) (c2)

Figure 6: Escape probability for the slow system (3.3) and (3.4) with V = 0.1, ε = 0.05,
a = 0.7 and σ = 0.01: (a1) and (a2) are Figure 5(a) splitting at the deterministic heteroclinic
orbit a sin ξ1 sin ξ2−V ξ1 = 0; (c1) and (c2) are Figure 5(c) splitting at the same heteroclinic
orbit.
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Figure 7: Deterministic stable manifold W s(0, π− sin−1(V
a
)) (Blue solid curve) and unstable

manifold W u(0, sin−1(V
a
)) (Blue dashed curve) for the slow system (3.3) and (3.4): V = 0.1,

ε = 0.05, a = 0.7, and σ = 0 (no noise). Two equilibrium points are (0, π − sin−1(V
a
)) and

(0, sin−1(V
a
)).

3.2 Deterministic Case

We recall the results, by one of the present authors, of the deterministic motion of aerosol
particles in a cellular flow [11].

When the settling velocity in still fluid is zero, i.e., V = 0 (and also σ = 0), particles are
trapped in the cell either in circular motion (with no inertial, ε = 0) or spiralling motion
(with inertial, ε > 0), as shown in Figure 1 (top) and (bottom), respectively.

When the settling velocity in still fluid is non-zero, i.e., V > 0, in the case with inertial
absent (ε = 0) and noise absent (σ = 0), the particles in the area surrounded by the
heteroclinic orbit a sin ξ1 sin ξ2 − V ξ1 = 0 connecting the equilibrium points (0, sin−1(V/a))
and (0, π − sin−1(V/a)), are trapped inside it, with the equilibrium point (cos−1(V/a), π/2)
as a center. But the particles in the remaining area settle to the bottom of the fluid. With an
arbitrarily small inertial effect (0 < ε≪ 1 and also σ = 0), the heteroclinic orbit breaks and
it leads to the settling of almost all particles, with the equilibrium point (cos−1(V/a)), π/2)
becoming an unstable spiral. Figure 7 is the stable manifold W s(0, π − sin−1(V/a)) (Blue
solid curve) and unstable manifold W u(0, sin−1(V/a)) (Blue dashed curve) when inertial
presents (ε = 0.05 and also σ = 0).
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Figure 8: Escape probability (Light blue color) for particles through the left boundary
for the slow system (3.3) and (3.4) with V = 0.1, ε = 0.05, a = 0.7 and σ = 0.01 (with
noise), together with deterministic stable manifoldW s(0, π−sin−1(V

a
)) and unstable manifold

W u(0, sin−1(V
a
)) (Red curves).
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Figure 9: Difference between the particle settling times for the deterministic case (σ = 0)
and the random case (σ = 0.01) of the slow system (3.3) and (3.4): V = 0.1, ε = 0.05 and
a = 0.7.

3.3 Stochastic Case

For zero settling velocity in still fluid (V = 0), we note that all particles are trapped in a
fluid cell D = (0, π)× (0, π) when noise is absent. Figure 1 shows the particle orbits in this
case.

For non-zero settling velocity in still fluid (V 6= 0), when noise is absent (σ = 0 ), all
particles settle to the fluid bottom; see Figure 2 (top, middle). But when noise is present
(σ 6= 0), some particles exit the cell not only by settling. Figure 2 (bottom) shows that, with
small noise (σ = 0.01), some particles indeed exit the cell from the vertical side boundary
ξ1 = 0.

In fact, when noise is present, all particles will exit, no matter the settling velocity in still
fluid V is zero or non-zero. Figure 3 indicates that with noise, particles will all exit from a
fluid cell in finite time, almost surely. In the following we only consider the case with noise.

Figures 4 — 5 plot the escape probability through four side boundaries, for zero or
non-zero V (settling velocity in still fluid) values. When a particle reaches or is on a side
boundary, it is regarded as ‘having escaped through’ that part of the boundary. In other
words, particles on a side boundary have escape probability 1 (you see this in these figures).
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When V = 0, the particles escape the cell through each of the four side boundaries with
similar or equal likelihood (Figure 4), as there is no preferred direction for particles due to
zero settling velocity V = 0 (in still fluid). With non-zero V , particles almost surely do not
escape through the right side boundary ξ1 = π. In fact, the inertial particles either settle to
the physical bottom or exit from the left side boundary ξ1 = 0. Figure 5 displays the escape
probability for V = 0.1, through each of the four side boundaries of the fluid cell. Although
most particles settle (Figure 5 (a)), some particles escape the fluid cell through the left side
boundary (Figure 5 (c)). See Figure 6 for a split view of this phenomenon.

To examine this phenomenon more carefully, we draw the stable manifold W s(0, π −
sin−1(V/a)) and unstable manifold W u(0, sin−1(V/a)) for the deterministic system (σ = 0)
in Figure 7. As shown in Figure 8, inertial particles with significant likelihood of escaping
through the left side boundary are near or on the stable manifold W s(0, π− sin−1(V/a)). In
other words, some (but not all) inertial particles near or on this stable manifold are resistent
to settling in the stochastic case. This resistance is quantified by the escape probability for
a particle to get out of the fluid cell through the left side boundary. More specifically, the
difference between the inertial particle settling times for deterministic case (σ = 0) and a
random case (σ = 0.01) is shown in Figure 9. We observe that the inertial particles near or
on the stable manifold W s(0, π − sin−1(V/a)) could have either a longer or shorter settling
time, compared with the deterministic case. This indicates that the noise could either delay
or enhance the settling (although we do not know the reason), and the stable manifold is an
agent facilitating this behavior. However, the overall impact of noise appears to delay the
settling, as the averaged difference over the cell (0, π)× (0, π) is −0.0133 for noise intensity
σ = 0.01, while this averaged value is −0.1168 for a stronger noise with σ = 0.1.

3.4 Conclusions

Let the settling velocity in still fluid be non-zero (i.e., V 6= 0).
(i) In the classical case (no inertial: ε = 0 and no noise: σ = 0), the particles surrounded
inside a heteroclinic orbit are trapped inside it and all the other particles settle to the bottom
of this cellular fluid flow.
(ii) In the case with only small inertia influence (0 < ε ≪ 1, σ = 0), the heteroclinic orbit
breaks up to form a stable manifold W s and an unstable manifold W u, the trapped particles
then settle, i.e., all inertial particles settle.
(iii) However, when the noise is present (0 < ε≪ 1, σ 6= 0), although most inertial particles
still settle, some particles near or on the deterministic stable manifold W s escape the fluid
cell through the left side boundary, with non-negligible likelihood. Thus, inertial particle
motions occur in two adjacent fluid cells in random cases, but confine in single cells in the
deterministic case.

In fact, noise could either delay settling for some particles or enhance settling for others,
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and the deterministic stable manifold is an agent to facilitate this phenomenon. Overall,
noise appears to delay the settling in an averaged sense.
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