1,078 research outputs found
Engaging Adjunct Faculty: The Role of Leadership in Faculty Development Initiatives
This interactive session will focus on issues faced by academic administrators and faculty development staff in supporting and mentoring adjunct faculty. It will review steps we have taken at our institution to engage adjunct faculty through onboarding and ongoing development activities.
Three key takeaways for attendees are:(1) To learn about the benefits of effective adjunct mentorship, including improved teaching effectiveness, retention, and job-satisfaction.(2) To identify major themes for new adjunct orientation and methods for presenting these using online resources.(3) To explore best practices for supporting adjunct faculty, including synchronous and asynchronous activities.
Through presentation, discussion, and hands-on activities, participants should leave the session engaged with innovative tools and strategies needed to effectively support and mentor adjunct faculty
Recommended from our members
Snow and ice melt flow features on Devon Island, Nunavut, Arctic Canada as possible analogs for recent slope flow features on Mars
Based on morphologic and contextual analogs from Devon Island, Arctic Canada, the recent martian slope flow features reported by Malin and Edgett are reinterpreted as being due not necessarily to groundwater seepage but possibly to snow or ice melt
Overlapping resonances in the control of intramolecular vibrational redistribution
Coherent control of bound state processes via the interfering overlapping
resonances scenario [Christopher et al., J. Chem. Phys. 123, 064313 (2006)] is
developed to control intramolecular vibrational redistribution (IVR). The
approach is applied to the flow of population between bonds in a model of
chaotic OCS vibrational dynamics, showing the ability to significantly alter
the extent and rate of IVR by varying quantum interference contributions.Comment: 10 pages, 7 figure
Diverse CD81 proteins support hepatitis C virus infection.
Hepatitis C virus (HCV) entry is dependent on CD81. To investigate whether the CD81 sequence is a determinant of HCV host range, we expressed a panel of diverse CD81 proteins and tested their ability to interact with HCV. CD81 large extracellular loop (LEL) sequences were expressed as recombinant proteins; the human and, to a low level, the African green monkey sequences bound soluble HCV E2 (sE2) and inhibited infection by retrovirus pseudotype particles bearing HCV glycoproteins (HCVpp). In contrast, mouse or rat CD81 proteins failed to bind sE2 or to inhibit HCVpp infection. However, CD81 proteins from all species, when expressed in HepG2 cells, conferred susceptibility to infection by HCVpp and cell culture-grown HCV to various levels, with the rat sequence being the least efficient. Recombinant human CD81 LEL inhibited HCVpp infectivity only if present during the virus-cell incubation, consistent with a role for CD81 after virus attachment. Amino acid changes that abrogate sE2 binding (I182F, N184Y, and F186S, alone or in combination) were introduced into human CD81. All three amino acid changes in human CD81 resulted in a molecule that still supported HCVpp infection, albeit with reduced efficiency. In summary, there is a remarkable plasticity in the range of CD81 sequences that can support HCV entry, suggesting that CD81 polymorphism may contribute to, but alone does not define, the HCV susceptibility of a species. In addition, the capacity to support viral entry is only partially reflected by assays measuring sE2 interaction with recombinant or full-length CD81 proteins
Diversity and environmental adaptation of phagocytic cell metabolism
Phagocytes are cells of the immune system that play important roles in phagocytosis, respiratory burst and degranulation-key components of innate immunity and response to infection. This diverse group of cells includes monocytes, macrophages, dendritic cells, neutrophils, eosinophils, and basophils-heterogeneous cell populations possessing cell and tissue-specific functions of which cellular metabolism comprises a critical underpinning. Core functions of phagocytic cells are diverse and sensitive to alterations in environmental- and tissue-specific nutrients and growth factors. As phagocytic cells adapt to these extracellular cues, cellular processes are altered and may contribute to pathogenesis. The considerable degree of functional heterogeneity among monocyte, neutrophil, and other phagocytic cell populations necessitates diverse metabolism. As we review our current understanding of metabolism in phagocytic cells, gaps are focused on to highlight the need for additional studies that hopefully enable improved cell-based strategies for counteracting cancer and other diseases
Radiation-Hydrodynamic Simulations of Collapse and Fragmentation in Massive Protostellar Cores
We simulate the early stages of the evolution of turbulent, virialized,
high-mass protostellar cores, with primary attention to how cores fragment, and
whether they form a small or large number of protostars. Our simulations use
the Orion adaptive mesh refinement code to follow the collapse from ~0.1 pc
scales to ~10 AU scales, for durations that cover the main fragmentation phase,
using three-dimensional gravito-radiation hydrodynamics. We find that for a
wide range of initial conditions radiation feedback from accreting protostars
inhibits the formation of fragments, so that the vast majority of the collapsed
mass accretes onto one or a few objects. Most of the fragmentation that does
occur takes place in massive, self-shielding disks. These are driven to
gravitational instability by rapid accretion, producing rapid mass and angular
momentum transport that allows most of the gas to accrete onto the central star
rather than forming fragments. In contrast, a control run using the same
initial conditions but an isothermal equation of state produces much more
fragmentation, both in and out of the disk. We conclude that massive cores with
observed properties are not likely to fragment into many stars, so that, at
least at high masses, the core mass function probably determines the stellar
initial mass function. Our results also demonstrate that simulations of massive
star forming regions that do not include radiative transfer, and instead rely
on a barotropic equation of state or optically thin heating and cooling curves,
are likely to produce misleading results.Comment: 23 pages, 18 figures, emulateapj format. Accepted to ApJ. This
version has minor typo fixes and small additions, no significant changes.
Resolution of images severely degraded to fit within size limit. Download the
full paper from http://www.astro.princeton.edu/~krumholz/recent.htm
Distribution of Visitor Use Management Research in US Wilderness from 2000 to 2020: A Scoping Review
Visitor use in wilderness has grown over the past several decades, along with research focused on visitor use management (VUM) in congressionally designated wilderness. This scoping review of research published between 2000 and 2020 explores the distribution and representativeness of wilderness VUM research within the context of (a) the federal land management agencies administering wilderness and (b) the geographic distribution of research. Findings indicate wilderness administered by the Bureau of Land Management and US Fish and Wildlife Service were disproportionately understudied compared to both the total acreage of wilderness and number of wilderness areas administered by the US Forest Service and National Park Service. Additionally, large geographic gaps exist in the research produced during this period, with clusters of VUM-related research occurring in high-profile wilderness areas and the vast majority (89%) of wilderness areas generating no research. As we look toward the next 20 years of wilderness VUM-related research, these findings suggest a need for a more representative narrative and highlight several specific opportunities for future research
Peritoneal tissue-resident macrophages are metabolically poised to engage microbes using tissue-niche fuels
The importance of metabolism in macrophage function has been reported, but the in vivo relevance of the in vitro observations is still unclear. Here we show that macrophage metabolites are defined in a specific tissue context, and these metabolites are crucially linked to tissue-resident macrophage functions. We find the peritoneum to be rich in glutamate, a glutaminolysis-fuel that is exploited by peritoneal-resident macrophages to maintain respiratory burst during phagocytosis via enhancing mitochondrial complex-II metabolism. This niche-supported, inducible mitochondrial function is dependent on protein kinase C activity, and is required to fine-tune the cytokine responses that control inflammation. In addition, we find that peritoneal-resident macrophage mitochondria are recruited to phagosomes and produce mitochondrially derived reactive oxygen species, which are necessary for microbial killing. We propose that tissue-resident macrophages are metabolically poised in situ to protect and exploit their tissue-niche by utilising locally available fuels to implement specific metabolic programmes upon microbial sensing
Shade coffee: Update on a disappearing refuge for biodiversity
In the past three decades, coffee cultivation has gained widespread attention for its crucial role in supporting local and global biodiversity. In this synthetic Overview, we present newly gathered data that summarize how global patterns in coffee distribution and shade vegetation have changed and discuss implications for biodiversity, ecosystem services, and livelihoods. Although overall cultivated coffee area has decreased by 8% since 1990, coffee production and agricultural intensification have increased in many places and shifted globally, with production expanding in Asia while contracting in Africa. Ecosystem services such as pollination, pest control, climate regulation, and nutrient sequestration are generally greater in shaded coffee farms, but many coffee-growing regions are removing shade trees from their management. Although it is clear that there are ecological and socioeconomic benefits associated with shaded coffee, we expose the many challenges and future research priorities needed to link sustainable coffee management with sustainable livelihoods. © 2014 The Author(s)
Exploring Underserved Communities’ Perspectives on Wilderness Character in Everglades National Park
Issues related to diversity, equity, and inclusion are becoming increasingly important to park and protected area managers. Recently, several Executive Orders have established policies and priorities for steering public lands to better serve the diversity of the US public. Certain groups, compared to the US population at large, are underrepresented as visitors to parks and protected areas in the US, including BIPOC communities (Black, Indigenous, and other People of Color), women, people with disabilities, veterans, people with lower socioeconomic status, and the elderly. This disparity in visitation may be even more pronounced in federally designated wilderness areas. We present a qualitative study focused on the relationships of traditionally underserved groups with Everglades National Park, specifically focusing on perceptions of wilderness character in the Marjory Stoneman Douglas Wilderness. Findings illuminate both perceived benefits of wilderness, including positive mental health, ecosystem services, and a connection to unique aspects of wilderness character in the Everglades, as well as conflicted feelings about wilderness as a place that underemphasizes historic interactions of underrepresented communities with the landscape. We discuss management implications, particularly ways to focus protected area efforts to broaden the relevancy of wilderness lands and better serve diverse populations within local communities
- …