402 research outputs found

    Petrological and geochemical variation during the Soufrière Hills eruption, 1995 to 2010

    Get PDF
    The andesite lava erupted at the Soufrière Hills Volcano (SHV) is crystal-rich with 33–63% phenocrysts of plagioclase (65%), amphibole (28%), orthopyroxene (7%), and minor Fe–Ti oxide and clinopyroxene microphenocrysts. The andesite hosts mafic enclaves that have similar mineral phases to the andesite. The enclaves are generally crystal-poor but can have up to 27% of inherited phenocrysts from the andesite, the majority of which are plagioclase. The eruption is defined by discrete periods of extrusion called phases, separated by pauses. The enclaves exhibit bulk geochemical trends that are consistent with fractionation. We infer that the intruded mafic liquids of Phases I and II interacted and assimilated plutonic residue remaining from the multiple prior mafic intrusions, while the basaltic liquids from Phases III and V assimilated relatively little material. We also infer a change in the basaltic composition coming from depth. The bulk Fe contents of both magma types are coupled and they both show a systematic interphase variation in Fe content. We interpret the coupled Fe variation to be due to contamination of the andesite from the intruding basalt via diffusion and advection processes, resulting in the erupted andesite products bearing the geochemical imprint of the syn-eruptive enclaves

    The Lie Algebraic Significance of Symmetric Informationally Complete Measurements

    Get PDF
    Examples of symmetric informationally complete positive operator valued measures (SIC-POVMs) have been constructed in every dimension less than or equal to 67. However, it remains an open question whether they exist in all finite dimensions. A SIC-POVM is usually thought of as a highly symmetric structure in quantum state space. However, its elements can equally well be regarded as a basis for the Lie algebra gl(d,C). In this paper we examine the resulting structure constants, which are calculated from the traces of the triple products of the SIC-POVM elements and which, it turns out, characterize the SIC-POVM up to unitary equivalence. We show that the structure constants have numerous remarkable properties. In particular we show that the existence of a SIC-POVM in dimension d is equivalent to the existence of a certain structure in the adjoint representation of gl(d,C). We hope that transforming the problem in this way, from a question about quantum state space to a question about Lie algebras, may help to make the existence problem tractable.Comment: 56 page

    A Background Noise Reduction Technique Using Adaptive Noise Cancellation for Microphone Arrays

    Get PDF
    Background noise in wind tunnel environments poses a challenge to acoustic measurements due to possible low or negative Signal to Noise Ratios (SNRs) present in the testing environment. This paper overviews the application of time domain Adaptive Noise Cancellation (ANC) to microphone array signals with an intended application of background noise reduction in wind tunnels. An experiment was conducted to simulate background noise from a wind tunnel circuit measured by an out-of-flow microphone array in the tunnel test section. A reference microphone was used to acquire a background noise signal which interfered with the desired primary noise source signal at the array. The technique s efficacy was investigated using frequency spectra from the array microphones, array beamforming of the point source region, and subsequent deconvolution using the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) algorithm. Comparisons were made with the conventional techniques for improving SNR of spectral and Cross-Spectral Matrix subtraction. The method was seen to recover the primary signal level in SNRs as low as -29 dB and outperform the conventional methods. A second processing approach using the center array microphone as the noise reference was investigated for more general applicability of the ANC technique. It outperformed the conventional methods at the -29 dB SNR but yielded less accurate results when coherence over the array dropped. This approach could possibly improve conventional testing methodology but must be investigated further under more realistic testing conditions

    Acoustic Data Processing and Transient Signal Analysis for the Hybrid Wing Body 14- by 22-Foot Subsonic Wind Tunnel Test

    Get PDF
    An advanced vehicle concept, the HWB N2A-EXTE aircraft design, was tested in NASA Langley's 14- by 22-Foot Subsonic Wind Tunnel to study its acoustic characteristics for var- ious propulsion system installation and airframe con gurations. A signi cant upgrade to existing data processing systems was implemented, with a focus on portability and a re- duction in turnaround time. These requirements were met by updating codes originally written for a cluster environment and transferring them to a local workstation while en- abling GPU computing. Post-test, additional processing of the time series was required to remove transient hydrodynamic gusts from some of the microphone time series. A novel automated procedure was developed to analyze and reject contaminated blocks of data, under the assumption that the desired acoustic signal of interest was a band-limited sta- tionary random process, and of lower variance than the hydrodynamic contamination. The procedure is shown to successfully identify and remove contaminated blocks of data and retain the desired acoustic signal. Additional corrections to the data, mainly background subtraction, shear layer refraction calculations, atmospheric attenuation and microphone directivity corrections, were all necessary for initial analysis and noise assessments. These were implemented for the post-processing of spectral data, and are shown to behave as expected

    Characterization of Flap Edge Noise Radiation from a High-Fidelity Airframe Model

    Get PDF
    The results of an experimental study of the noise generated by a baseline high-fidelity airframe model are presented. The test campaign was conducted in the open-jet test section of the NASA Langley 14- by 22-foot Subsonic Tunnel on an 18%-scale, semi-span Gulfstream airframe model incorporating a trailing edge flap and main landing gear. Unsteady surface pressure measurements were obtained from a series of sensors positioned along the two flap edges, and far field acoustic measurements were obtained using a 97-microphone phased array that viewed the pressure side of the airframe. The DAMAS array deconvolution method was employed to determine the locations and strengths of relevant noise sources in the vicinity of the flap edges and the landing gear. A Coherent Output Power (COP) spectral method was used to couple the unsteady surface pressures measured along the flap edges with the phased array output. The results indicate that outboard flap edge noise is dominated by the flap bulb seal cavity with very strong COP coherence over an approximate model-scale frequency range of 1 to 5 kHz observed between the array output and those unsteady pressure sensors nearest the aft end of the cavity. An examination of experimental COP spectra for the inboard flap proved inconclusive, most likely due to a combination of coherence loss caused by decorrelation of acoustic waves propagating through the thick wind tunnel shear layer and contamination of the spectra by tunnel background noise at lower frequencies. Directivity measurements obtained from integration of DAMAS pressure-squared values over defined geometric zones around the model show that the baseline flap and landing gear are only moderately directional as a function of polar emission angle

    A novel conjugal donor strain for improved DNA transfer into Clostridium spp.

    Get PDF
    © 2019 The Authors Importance: The ability to transfer genetic material into a target organism is crucial for the development of a wide range of targeted genetic manipulation techniques. Overcoming the organisms’ native restriction systems which target foreign incoming DNA is one strategy that can increase the efficiency of genetic transfer. The novel E. coli donor strain described here employs this strategy, increasing the frequencies of conjugation into a range of clostridial strains, and therefore opening up the potential to implement novel gene manipulation techniques. Furthermore this novel donor strain has potential applications across a wide range of genetically recalcitrant organisms, and should be beneficial wherever the frequently occurring Type IV restriction systems are possessed by the target in question

    Generation of a fully erythromycin-sensitive strain of Clostridioides difficile using a novel CRISPR-Cas9 genome editing system

    Get PDF
    © 2019, The Author(s). Understanding the molecular pathogenesis of Clostridioides difficile has relied on the use of ermB-based mutagens in erythromycin-sensitive strains. However, the repeated subcultures required to isolate sensitive variants can lead to the acquisition of ancillary mutations that affect phenotype, including virulence. CRISPR-Cas9 allows the direct selection of mutants, reducing the number of subcultures and thereby minimising the likelihood of acquiring additional mutations. Accordingly, CRISPR-Cas9 was used to sequentially remove from the C. difficile 630 reference strain (NCTC 13307) two ermB genes and pyrE. The genomes of the strains generated (630Δerm* and 630Δerm*ΔpyrE, respectively) contained no ancillary mutations compared to the NCTC 13307 parental strain, making these strains the preferred option where erythromycin-sensitive 630 strains are required. Intriguingly, the cas9 gene of the plasmid used contained a proximal frameshift mutation. Despite this, the frequency of mutant isolation was high (96% and 89% for ermB and pyrE, respectively) indicating that a functional Cas9 is still being produced. Re-initiation of translation from an internal AUG start codon would produce a foreshortened protein lacking a RuvCI nucleolytic domain, effectively a ‘nickase’. The mutation allowed cas9 to be cloned downstream of the strong Pthl promoter. It may find application elsewhere where the use of strong, constitutive promoters is preferred

    Effect of Loading Configuration on Kinematics and Kinetics for Deadlift and Squat Exercises: Case Study in Modeling Exercise Countermeasure Device for Astronauts

    Get PDF
    This study compares squat and deadlift exercises performed with two different loading configurations: 1) on a novel single-cable resistance exercise countermeasure device (ECD) for spaceflight and 2) with free weights. The results compare joint kinematics and kinetics between different loading configurations for each exercise, and also between the two exercises for each loading configuration. Single-cable versions of the squat (using a harness) and deadlift (using a T-bar) performed on the Hybrid Ultimate Lifting Kit (HULK) ECD have significantly different sagittal plane joint angle kinematics (both peak angle and range of motion) as well as joint kinetics (both peak joint moment and joint impulse) vs. their free weight equivalents at the same load. Differences also exist in hip abduction and rotation. Overall, the single-cable configurations tend to reduce peak joint angles, ranges of motion, peak joint moment and joint impulse vs. free weights. A notable exception is the lumbar joint, which is more heavily loaded for single-cable squats vs. free weight squats. This may have implications for both training benefit and possible risk of injury. Deadlift and squat exercises work the lower body musculature in different ways, with the deadlift emphasizing hip and lumbar extension and the squat emphasizing knee extension. Based on these findings, we would advocate the use of both movements in the exercise prescriptions of astronaut crews on deep-space missions

    The structure of quantum Lie algebras for the classical series B_l, C_l and D_l

    Get PDF
    The structure constants of quantum Lie algebras depend on a quantum deformation parameter q and they reduce to the classical structure constants of a Lie algebra at q=1q=1. We explain the relationship between the structure constants of quantum Lie algebras and quantum Clebsch-Gordan coefficients for adjoint x adjoint ---> adjoint. We present a practical method for the determination of these quantum Clebsch-Gordan coefficients and are thus able to give explicit expressions for the structure constants of the quantum Lie algebras associated to the classical Lie algebras B_l, C_l and D_l. In the quantum case also the structure constants of the Cartan subalgebra are non-zero and we observe that they are determined in terms of the simple quantum roots. We introduce an invariant Killing form on the quantum Lie algebras and find that it takes values which are simple q-deformations of the classical ones.Comment: 25 pages, amslatex, eepic. Final version for publication in J. Phys. A. Minor misprints in eqs. 5.11 and 5.12 correcte

    SN 2010U: A Luminous Nova in NGC 4214

    Get PDF
    The luminosity, light curve, post-maximum spectrum, and lack of a progenitor on deep pre-outburst images suggest that SN 2010U was a luminous, fast nova. Its outburst magnitude is consistent with that for a fast nova using the maximum magnitude-rate of decline relationship for classical novae
    • …
    corecore