209 research outputs found

    Extremely Sub-wavelength Planar Magnetic Metamaterials

    Full text link
    We present highly sub-wavelength magnetic metamaterials designed for operation at radio frequencies (RFs). A dual layer design consisting of independent planar spiral elements enables experimental demonstration of a unit cell size (a) that is ~ 700 times smaller than the resonant wavelength ({\lambda}0). Simulations indicate that utilization of a conductive via to connect spiral layers permits further optimization and we achieve a unit cell that is {\lambda}0/a ~ 2000. Magnetic metamaterials are characterized by a novel time domain method which permits determination of the complex magnetic response. Numerical simulations are performed to support experimental data and we find excellent agreement. These new designs make metamaterial low frequency experimental investigations practical and suggest their use for study of magneto-inductive waves, levitation, and further enable potential RF applications.Comment: 5 pages, 4 figure

    Enabling Analytics in the Cloud for Earth Science Data

    Get PDF
    The purpose of this workshop was to hold interactive discussions where providers, users, and other stakeholders could explore the convergence of three main elements in the rapidly developing world of technology: Big Data, Cloud Computing, and Analytics, [for earth science data]

    Comparison of the Relationship between Lying and Standing Ultrasonography Measures of Muscle Morphology with Isometric and Dynamic Force Production Capabilities

    Get PDF
    The purpose of the current study was (1) to examine the differences between standing and lying measures of vastus lateralis (VL), muscle thickness (MT), pennation angle (PA), and cross-sectional area (CSA) using ultrasonography; and (2) to explore the relationships between lying and standing measures with isometric and dynamic assessments of force production—specifically peak force, rate of force development (RFD), impulse, and one-repetition maximum back squat. Fourteen resistance-trained subjects (age = 26.8 ± 4.0 years, height = 181.4 ± 6.0 cm, body mass = 89.8 ± 10.7 kg, back squat to body mass ratio = 1.84 ± 0.34) agreed to participate. Lying and standing ultrasonography images of the right VL were collected following 48 hours of rest. Isometric squat assessments followed ultrasonography, and were performed on force platforms with data used to determine isometric peak force (IPF), as well as RFD and impulse at various time points. Forty-eight hours later, one-repetition maximum back squats were performed by each subject. Paired-samples t-tests revealed statistically significant differences between standing and lying measurements of MT (p \u3c 0.001), PA (p \u3c 0.001), and CSA (p ≤ 0.05), with standing values larger in all cases. Further, standing measures were correlated more strongly and abundantly to isometric and dynamic performance. These results suggest that if practitioners intend to gain insight into strength-power potential based on ultrasonography measurements, performing the measurement collection with the athlete in a standing posture may be preferred

    Global Brain Dynamics during Social Exclusion Predict Subsequent Behavioral Conformity

    Get PDF
    Individuals react differently to social experiences; for example, people who are more sensitive to negative social experiences, such as being excluded, may be more likely to adapt their behavior to fit in with others. We examined whether functional brain connectivity during social exclusion in the fMRI scanner can be used to predict subsequent conformity to peer norms. Adolescent males (n = 57) completed a two-part study on teen driving risk: a social exclusion task (Cyberball) during an fMRI session and a subsequent driving simulator session in which they drove alone and in the presence of a peer who expressed risk-averse or risk-accepting driving norms. We computed the difference in functional connectivity between social exclusion and social inclusion from each node in the brain to nodes in two brain networks, one previously associated with mentalizing (medial prefrontal cortex, temporoparietal junction, precuneus, temporal poles) and another with social pain (dorsal anterior cingulate cortex, anterior insula). Using predictive modeling, this measure of global connectivity during exclusion predicted the extent of conformity to peer pressure during driving in the subsequent experimental session. These findings extend our understanding of how global neural dynamics guide social behavior, revealing functional network activity that captures individual differences

    Comparison of the Relationship between Lying and Standing Ultrasonography Measures of Muscle Morphology with Isometric and Dynamic Force Production Capabilities

    Get PDF
    The purpose of the current study was (1) to examine the differences between standing and lying measures of vastus lateralis (VL), muscle thickness (MT), pennation angle (PA), and cross-sectional area (CSA) using ultrasonography; and (2) to explore the relationships between lying and standing measures with isometric and dynamic assessments of force production—specifically peak force, rate of force development (RFD), impulse, and one-repetition maximum back squat. Fourteen resistance-trained subjects (age = 26.8 ± 4.0 years, height = 181.4 ± 6.0 cm, body mass = 89.8 ± 10.7 kg, back squat to body mass ratio = 1.84 ± 0.34) agreed to participate. Lying and standing ultrasonography images of the right VL were collected following 48 hours of rest. Isometric squat assessments followed ultrasonography, and were performed on force platforms with data used to determine isometric peak force (IPF), as well as RFD and impulse at various time points. Forty-eight hours later, one-repetition maximum back squats were performed by each subject. Paired-samples t-tests revealed statistically significant differences between standing and lying measurements of MT (p \u3c 0.001), PA (p \u3c 0.001), and CSA (p ≤ 0.05), with standing values larger in all cases. Further, standing measures were correlated more strongly and abundantly to isometric and dynamic performance. These results suggest that if practitioners intend to gain insight into strength-power potential based on ultrasonography measurements, performing the measurement collection with the athlete in a standing posture may be preferred

    Repetition-to-Repetition Differences Using Cluster and Accentuated Eccentric Loading in the Back Squat

    Get PDF
    The current investigation was an examination of the repetition-to-repetition magnitudes and changes in kinetic and kinematic characteristics of the back squat using accentuated eccentric loading (AEL) and cluster sets. Trained male subjects (age = 26.1 ± 4.1 years, height = 183.5 ± 4.3 cm, body mass = 92.5 ± 10.5 kg, back squat to body mass ratio = 1.8 ± 0.3) completed four load condition sessions, each consisting of three sets of five repetitions of either traditionally loaded straight sets (TL), traditionally loaded cluster sets (TLC), AEL cluster sets (AEC), and AEL straight sets where only the initial repetition had eccentric overload (AEL1). Eccentric overload was applied using weight releasers, creating a total eccentric load equivalent to 105% of concentric one repetition maximum (1RM). Concentric load was 80% 1RM for all load conditions. Using straight sets (TL and AEL1) tended to decrease peak power (PP) (d = −1.90 to −0.76), concentric rate of force development (RFDCON) (d = −1.59 to −0.27), and average velocity (MV) (d = −3.91 to −1.29), with moderate decreases in MV using cluster sets (d= −0.81 to −0.62). Greater magnitude eccentric rate of force development (RFDECC) was observed using AEC at repetition three (R3) and five (R5) compared to all load conditions (d = 0.21–0.65). Large within-condition changes in RFDECC from repetition one to repetition three (∆REP1–3) were present using AEL1 (d = 1.51), demonstrating that RFDECC remained elevated for at least three repetitions despite overload only present on the initial repetition. Overall, cluster sets appear to permit higher magnitude and improved maintenance of concentric outputs throughout a set. Eccentric overload with the loading protocol used in the current study does not appear to potentiate concentric output regardless of set configuration but may cause greater RFDECCcompared to traditional loadin

    The Bristol CMIP6 Data Hackathon

    Get PDF
    The Bristol CMIP6 Data Hackathon formed part of the Met Office Climate Data Challenge Hackathon series during 2021, bringing together around 100 UK early career researchers from a wide range of environmental disciplines. The purpose was to interrogate the under-utilised but currently most advanced climate model inter-comparison project datasets to develop new research ideas, create new networks and outreach opportunities in the lead up to COP26. Experts in different science fields, supported by a core team of scientists and data specialists at Bristol, had the unique opportunity to explore together interdisciplinary environmental topics summarised in this article

    Robotic milking technologies and renegotiating situated ethical relationships on UK dairy farms

    Get PDF
    Robotic or automatic milking systems (AMS) are novel technologies that take over the labor of dairy farming and reduce the need for human-animal interactions. Because robotic milking involves the replacement of 'conventional' twice-a-day milking managed by people with a system that supposedly allows cows the freedom to be milked automatically whenever they choose, some claim robotic milking has health and welfare benefits for cows, increases productivity, and has lifestyle advantages for dairy farmers. This paper examines how established ethical relations on dairy farms are unsettled by the intervention of a radically different technology such as AMS. The renegotiation of ethical relationships is thus an important dimension of how the actors involved are re-assembled around a new technology. The paper draws on in-depth research on UK dairy farms comparing those using conventional milking technologies with those using AMS. We explore the situated ethical relations that are negotiated in practice, focusing on the contingent and complex nature of human-animal-technology interactions. We show that ethical relations are situated and emergent, and that as the identities, roles, and subjectivities of humans and animals are unsettled through the intervention of a new technology, the ethical relations also shift. © 2013 Springer Science+Business Media Dordrecht
    • …
    corecore