23 research outputs found
Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo.
Mutations of the mitochondrial genome (mtDNA) underlie a substantial portion of mitochondrial disease burden. These disorders are currently incurable and effectively untreatable, with heterogeneous penetrance, presentation and prognosis. To address the lack of effective treatment for these disorders, we exploited a recently developed mouse model that recapitulates common molecular features of heteroplasmic mtDNA disease in cardiac tissue: the m.5024C>T tRNAAla mouse. Through application of a programmable nuclease therapy approach, using systemically administered, mitochondrially targeted zinc-finger nucleases (mtZFN) delivered by adeno-associated virus, we induced specific elimination of mutant mtDNA across the heart, coupled to a reversion of molecular and biochemical phenotypes. These findings constitute proof of principle that mtDNA heteroplasmy correction using programmable nucleases could provide a therapeutic route for heteroplasmic mitochondrial diseases of diverse genetic origin
The IceCube Data Acquisition System: Signal Capture, Digitization, and Timestamping
IceCube is a km-scale neutrino observatory under construction at the South
Pole with sensors both in the deep ice (InIce) and on the surface (IceTop). The
sensors, called Digital Optical Modules (DOMs), detect, digitize and timestamp
the signals from optical Cherenkov-radiation photons. The DOM Main Board (MB)
data acquisition subsystem is connected to the central DAQ in the IceCube
Laboratory (ICL) by a single twisted copper wire-pair and transmits packetized
data on demand. Time calibration is maintained throughout the array by regular
transmission to the DOMs of precisely timed analog signals, synchronized to a
central GPS-disciplined clock. The design goals and consequent features,
functional capabilities, and initial performance of the DOM MB, and the
operation of a combined array of DOMs as a system, are described here.
Experience with the first InIce strings and the IceTop stations indicates that
the system design and performance goals have been achieved.Comment: 42 pages, 20 figures, submitted to Nuclear Instruments and Methods
Mitochondrial physiology
As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Mitochondrial physiology
As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Venous pressure during intravenous regional anesthesia: Implications for setting tourniquet pressure
Background and Aims: Intravenous regional anesthesia (IVRA) is utilized for upper extremity surgery, but higher tourniquet pressure and longer inflation time increase the risk of soft tissue and nerve injury. We investigated the duration and magnitude of elevated venous pressure during IVRA to assess the possibility of safely lowering the tourniquet pressure during surgery.
Material and Methods: Twenty adult patients scheduled for distal upper extremity surgery were enrolled. An additional intravenous catheter was placed in the surgical arm connected to a digital pressure transducer for monitoring venous pressure. Venous pressure was recorded prior to IVRA and every 30 s after injection of local anesthetic (LA) until the completion of surgery.
Results: All 20 subjects completed the study without complication. Peak venous pressure was 340 mmHg in one patient which lasted for less than 30 s. Mean venous pressures fell below systolic blood pressure after 4.5 min in all cases except one. This patient had elevated venous pressures for 24 of 25 min of tourniquet time exceeding systolic blood pressure. The only statistically significant intraoperative factor associated with elevated venous pressure was elevated peak systolic pressure (P = 0.001).
Conclusions: We found that the mean peak venous pressure was below systolic blood pressure in only 14 of the 20 subjects, and the peak injection pressure exceeded 300 mmHg in one patient. Another patient's venous pressure remained above systolic blood pressure for 24 of 25 min of tourniquet time. Current precautions to prevent LA toxicity may be insufficient in some patients and attempts to lower tourniquet pressures to just above systolic blood pressures soon after IVRA injection may result in toxicity, specifically if systolic pressure is elevated
Clonidine as an adjunct to intravenous regional anesthesia: A randomized, double-blind, placebo-controlled dose ranging study
Background : The addition of clonidine to lidocaine intravenous regional anesthesia (IVRA) has been previously reported to improve postoperative analgesia in patients undergoing upper extremity surgery. Our objective was to perform a dose ranging study in order to determine the optimal dose of clonidine used with lidocaine in IVRA.
Design & Setting : We performed a double-blinded randomized placebo-controlled study with 60 patients scheduled for elective endoscopic carpal tunnel release under IVRA with 50 ml lidocaine 0.5%. University-affiliated outpatient surgery center. Data collected in operating rooms, recovery room, and by telephone after discharge from surgery center.
Materials & Methods : Sixty adult ASA I or II patients undergoing outpatient endoscopic carpal tunnel release under intravenous regional anesthesia.Patients were randomized into five study groups receiving different doses of clonidine in addition to 50 ml 0.5% lidocaine in their IVRA. Group A received 0 mcg/kg, group B 0.25 mcg/kg, group C 0.5 mcg/kg, group D 1.0 mcg/kg and group E 1.5 mcg/kg of clonidine.Intraoperative fentanyl, recovery room pain scores, time to first postsurgical analgesic, total number of acetaminophen/codeine tablets consumed postsurgery, incidence of sedation, hypotension and bradycardia.
Results & Conclusions : There was no benefit from any dose of clonidine compared to placebo. There were no clonidine-related side effects seen within the dose range studied. In short duration minor hand surgery, the addition of clonidine to lidocaine-based intravenous regional anesthesia provides no measurable benefit