176 research outputs found

    The XXL Survey V: Detection of the Sunyaev-Zel'dovich effect of the Redshift 1.9 Galaxy Cluster XLSSU J021744.1-034536 with CARMA

    Get PDF
    We report the detection of the Sunyaev-Zel'dovich (SZ) effect of galaxy cluster XLSSU J021744.1-034536, using 30 GHz CARMA data. This cluster was discovered via its extended X-ray emission in the XMM-Newton Large Scale Structure survey, the precursor to the XXL survey. It has a photometrically determined redshift z=1.910.21+0.19z=1.91^{+0.19}_{-0.21}, making it among the most distant clusters known, and nominally the most distant for which the SZ effect has been measured. The spherically integrated Comptonization is Y500=(3.0±0.4)×1012Y_{500}=(3.0\pm0.4)\times 10^{-12}, a measurement which is relatively insensitive to assumptions regarding the size and redshift of the cluster, as well as the background cosmology. Using a variety of locally calibrated cluster scaling relations extrapolated to z~2, we estimate a mass M500(1M_{500} \sim (1-2)×1014Msun2)\times 10^{14}M_{sun} from the X-ray flux and SZ signal. The measured properties of this cluster are in good agreement with the extrapolation of an X-ray luminosity-SZ effect scaling relation calibrated from clusters discovered by the South Pole Telescope at higher masses and lower redshifts. The full XXL-CARMA sample will provide a more complete, multi-wavelength census of distant clusters in order to robustly extend the calibration of cluster scaling relations to these high redshifts.Comment: ApJ, in press. 9 pages, 4 figures, 4 table

    CARMA Measurements of the Sunyaev-Zel'dovich Effect in RXJ1347.5-1145

    Get PDF
    We demonstrate the Sunyaev-Zel'dovich (SZ) effect imaging capabilities of the Combined Array for Research in Millimeter-wave Astronomy (CARMA) by presenting an SZ map of the galaxy cluster RXJ1347.5-1145. By combining data from multiple CARMA bands and configurations, we are able to capture the structure of this cluster over a wide range of angular scales, from its bulk properties to its core morphology. We find that roughly 9% of this cluster's thermal energy is associated with sub-arcminute-scale structure imparted by a merger, illustrating the value of high-resolution SZ measurements for pursuing cluster astrophysics and for understanding the scatter in SZ scaling relations. We also find that the cluster's SZ signal is lower in amplitude than suggested by a spherically-symmetric model derived from X-ray data, consistent with compression along the line of sight relative to the plane of the sky. Finally, we discuss the impact of upgrades currently in progress that will further enhance CARMA's power as an SZ imaging instrument.Comment: 8 pages, 6 figure

    A VLBI receiving system for the South Pole Telescope

    Full text link
    The Event Horizon Telescope (EHT) is a very-long-baseline interferometry (VLBI) experiment that aims to observe supermassive black holes with an angular resolution that is comparable to the event horizon scale. The South Pole occupies an important position in the array, greatly increasing its north-south extent and therefore its resolution. The South Pole Telescope (SPT) is a 10-meter diameter, millimeter-wavelength telescope equipped for bolometric observations of the cosmic microwave background. To enable VLBI observations with the SPT we have constructed a coherent signal chain suitable for the South Pole environment. The dual-frequency receiver incorporates state-of-the-art SIS mixers and is installed in the SPT receiver cabin. The VLBI signal chain also includes a recording system and reference frequency generator tied to a hydrogen maser. Here we describe the SPT VLBI system design in detail and present both the lab measurements and on-sky results.Comment: 14 pages, 11 figures, to appear in the Proceedings of the SPIE (SPIE Astronomical Telescopes + Instrumentation 2018; Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX

    Constraints on the Thermal Contents of the X-ray Cavities of Cluster MS 0735.6+7421 with Sunyaev-Zel'dovich Effect Observations

    Get PDF
    Outbursts from active galactic nuclei (AGN) can inflate cavities in the intracluster medium (ICM) of galaxy clusters and are believed to play the primary role in offsetting radiative cooling in the ICM. However, the details of how the energy from AGN feedback thermalizes to heat the ICM is not well understood, partly due to the unknown composition and energetics of the cavities. The Sunyaev-Zel'dovich (SZ) effect, a measure of the integrated pressure along the line of sight, provides a means of measuring the thermal contents of the cavities, to discriminate between thermal, nonthermal, and other sources of pressure support. Here we report measurements of the SZ effect at 30 GHz toward the galaxy cluster MS 0735.6+7421 (MS0735), using the Combined Array for Research in Millimeter-wave Astronomy (CARMA). MS0735 hosts the most energetic AGN outburst known and lobes of radio synchrotron emission coincident with a pair of giant X-ray cavities 200\sim 200 across. Our CARMA maps show a clear deficit in the SZ signal coincident with the X-ray identified cavities, when compared to a smooth X-ray derived pressure model. We find that the cavities have very little SZ-contributing material, suggesting that they are either supported by very diffuse thermal plasma with temperature in excess of hundreds of keV, or are not supported thermally. Our results represent the first detection (with 4.4σ4.4 \sigma significance) of this phenomenon with the SZ effect.Comment: 15 pages, 9 figures, submitted to ApJ Jun 2018, Accepted Dec 2018, Published Jan 2019. This is the version of the article before editing, as submitted by an author to ApJ. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.3847/1538-4357/aaf88

    Efficacy, persistence and vector susceptibility to pirimiphos-methyl (Actellic® 300CS) insecticide for indoor residual spraying in Zanzibar

    Get PDF
    Background Indoor residual spraying (IRS) of households with insecticide is a principal malaria vector control intervention in Zanzibar. In 2006, IRS using the pyrethroid lambda-cyhalothrine was introduced in Zanzibar. Following detection of pyrethroid resistance in 2010, an insecticide resistance management plan was proposed, and IRS using bendiocarb was started in 2011. In 2014, bendiocarb was replaced by pirimiphos methyl. This study investigated the residual efficacy of pirimiphos methyl (Actellic® 300CS) sprayed on common surfaces of human dwellings in Zanzibar. Methods The residual activity of Actellic 300CS was determined over 9 months through bioassay tests that measured the mortality of female Anopheles mosquitoes, exposed to sprayed surfaces under a WHO cone. The wall surfaces included; mud wall, oil or water painted walls, lime washed wall, un-plastered cement block wall and stone blocks. Insecticide susceptibility testing was done to investigate the resistance status of local malaria vectors against Actellic 300CS using WHO protocols; Anopheline species were identified using PCR methods. Results Baseline tests conducted one-day post-IRS revealed 100 % mortality on all sprayed surfaces. The residual efficacy of Actellic 300CS was maintained on all sprayed surfaces up to 8 months post-IRS. However, the bioassay test conducted 9 months post-IRS showed the 24 h mortality rate to be ≤80 % for lime wash, mud wall, water paint and stone block surfaces. Only oil paint surface retained the recommended residual efficacy beyond 9 months post-IRS, with mortality maintained at ≥97 %. Results of susceptibility tests showed that malaria vectors in Zanzibar were fully (100 %) susceptible to Actellic 300CS. The predominant mosquito vector species was An. arabiensis (76.0 %) in Pemba and An. gambiae (83.5 %) in Unguja. Conclusion The microencapsulated formulation of pirimiphos methyl (Actellic 300CS) is a highly effective and appropriate insecticide for IRS use in Zanzibar as it showed a relatively prolonged residual activity compared to other products used for the same purpose. The insecticide extends the residual effect of IRS thereby making it possible to effectively protect communities with a single annual spray round reducing overall costs. The insecticide proved to be a useful alternative in insecticide resistance management plans

    "Even if the test result is negative, they should be able to tell us what is wrong with us": a qualitative study of patient expectations of rapid diagnostic tests for malaria.

    Get PDF
    BACKGROUND: The debate on rapid diagnostic tests (RDTs) for malaria has begun to shift from whether RDTs should be used, to how and under what circumstances their use can be optimized. This has increased the need for a better understanding of the complexities surrounding the role of RDTs in appropriate treatment of fever. Studies have focused on clinician practices, but few have sought to understand patient perspectives, beyond notions of acceptability. METHODS: This qualitative study aimed to explore patient and caregiver perceptions and experiences of RDTs following a trial to assess the introduction of the tests into routine clinical care at four health facilities in one district in Ghana. Six focus group discussions and one in-depth interview were carried out with those who had received an RDT with a negative test result. RESULTS: Patients had high expectations of RDTs. They welcomed the tests as aiding clinical diagnoses and as tools that could communicate their problem better than they could, verbally. However, respondents also believed the tests could identify any cause of illness, beyond malaria. Experiences of patients suggested that RDTs were adopted into an existing system where patients are both physically and intellectually removed from diagnostic processes and where clinicians retain authority that supersedes tests and their results. In this situation, patients did not feel able to articulate a demand for test-driven diagnosis. CONCLUSIONS: Improvements in communication between the health worker and patient, particularly to explain the capabilities of the test and management of RDT negative cases, may both manage patient expectations and promote patient demand for test-driven diagnoses

    First Results from COPSS: The CO Power Spectrum Survey

    Get PDF
    We present constraints on the abundance of carbon monoxide in the early universe from the CO Power Spectrum Survey. We utilize a data set collected between 2005 and 2008 using the Sunyaev–Zel'dovich Array (SZA), which was previously used to measure arcminute-scale fluctuations of the cosmic microwave background. This data set features observations of 44 fields, covering an effective area of 1.7 square degrees, over a frequency range of 27–35 GHz. Using the technique of intensity mapping, we are able to probe the CO(1–0) transition, with sensitivity to spatial modes between k = 0.5–2 h Mpc^(−1) over a range in redshift of z = 2.3–3.3, spanning a comoving volume of 3.6 × 10^6 h^(−3) Mpc^3. We demonstrate our ability to mitigate foregrounds, and present estimates of the impact of continuum sources on our measurement. We constrain the CO power spectrum to P_(CO) < 2.6 × 10^4 μK^2 (h^(−1) Mpc)^3, or Δ^2_(CO)(k = 1 h Mpc^(−1)) < 1.3 × 10^3 μK^2, at 95% confidence. This limit resides near optimistic predictions for the CO power spectrum. Under the assumption that CO emission is proportional to halo mass during bursts of active star formation, this corresponds to a limit on the ratio of CO(1–0) luminosity to host halo mass of A_(CO) < 1.2 × 10^(−5) L⊙_ M_⊙^(−1). Further assuming a Milky Way-like conversion factor between CO luminosity and molecular gas mass (α_(CO) = 4.3 M_⊙ (K km s^(−1) pc^(−2))^(−1)), we constrain the global density of molecular gas to ρ_(z~3) (M_H_2) ⩽ 2.8 x 10^8 M_☉ Mpc^(-3)

    Detection of intrinsic source structure at ~3 Schwarzschild radii with Millimeter-VLBI observations of SAGITTARIUS A*

    Get PDF
    We report results from very long baseline interferometric (VLBI) observations of the supermassive black hole in the Galactic center, Sgr A*, at 1.3 mm (230 GHz). The observations were performed in 2013 March using six VLBI stations in Hawaii, California, Arizona, and Chile. Compared to earlier observations, the addition of the APEX telescope in Chile almost doubles the longest baseline length in the array, provides additional {\it uv} coverage in the N-S direction, and leads to a spatial resolution of \sim30 μ\muas (\sim3 Schwarzschild radii) for Sgr A*. The source is detected even at the longest baselines with visibility amplitudes of \sim4-13% of the total flux density. We argue that such flux densities cannot result from interstellar refractive scattering alone, but indicate the presence of compact intrinsic source structure on scales of \sim3 Schwarzschild radii. The measured nonzero closure phases rule out point-symmetric emission. We discuss our results in the context of simple geometric models that capture the basic characteristics and brightness distributions of disk- and jet-dominated models and show that both can reproduce the observed data. Common to these models are the brightness asymmetry, the orientation, and characteristic sizes, which are comparable to the expected size of the black hole shadow. Future 1.3 mm VLBI observations with an expanded array and better sensitivity will allow a more detailed imaging of the horizon-scale structure and bear the potential for a deep insight into the physical processes at the black hole boundary.Comment: 11 pages, 5 figures, accepted to Ap
    corecore