836 research outputs found

    A Unified Concept of Population Transfer (Revised)

    Get PDF

    A Unified Concept of Population Transfer

    Get PDF

    A Generic Software Architecture For Prognostics

    Get PDF
    Prognostics is a systems engineering discipline focused on predicting end-of-life of components and systems. As a relatively new and emerging technology, there are few fielded implementations of prognostics, due in part to practitioners perceiving a large hurdle in developing the models, algorithms, architecture, and integration pieces. As a result, no open software frameworks for applying prognostics currently exist. This paper introduces the Generic Software Architecture for Prognostics (GSAP), an open-source, cross-platform, object-oriented software framework and support library for creating prognostics applications. GSAP was designed to make prognostics more accessible and enable faster adoption and implementation by industry, by reducing the effort and investment required to develop, test, and deploy prognostics. This paper describes the requirements, design, and testing of GSAP. Additionally, a detailed case study involving battery prognostics demonstrates its use

    Blood test shows high accuracy in detecting stage I non-small cell lung cancer.

    Get PDF
    BACKGROUND: In a previous study (Goebel et. al, Cancer Genomics Proteomics 16:229-244, 2019), we identified 33 biomarkers for an early stage (I-II) Non-Small Cell Lung Cancer (NSCLC) test with 90% accuracy, 80.3% sensitivity, and 95.4% specificity. For the current study, we used a narrowed ensemble of 21 biomarkers while retaining similar accuracy in detecting early stage lung cancer. METHODS: A multiplex platform, 486 human plasma samples, and 21 biomarkers were used to develop and validate our algorithm which detects early stage NSCLC. The training set consisted of 258 human plasma with 79 Stage I-II NSCLC samples. The 21 biomarkers with the statistical model (Lung Cancer Detector Test 1, LCDT1) was then validated using 228 novel samples which included 55 Stage I NSCLC. RESULTS: The LCDT1 exhibited 95.6% accuracy, 89.1% sensitivity, and 97.7% specificity in detecting Stage I NSCLC on the blind set. When only NSCLC cancers were analyzed, the specificity increased to 99.1%. CONCLUSIONS: Compared to current approved clinical methods for diagnosing NSCLC, the LCDT1 greatly improves accuracy while being non-invasive; a simple, cost-effective, early diagnostic blood test should result in expanding access and increase survival rate

    Diagnosis of Non-small Cell Lung Cancer for Early Stage Asymptomatic Patients.

    Get PDF
    BACKGROUND/AIM: In 2016 in the United States, 7 of 10 patients were estimated to die following lung cancer diagnosis. This is due to a lack of a reliable screening method that detects early-stage lung cancer. Our aim is to accurately detect early stage lung cancer using algorithms and protein biomarkers. PATIENTS AND METHODS: A total of 1,479 human plasma samples were processed using a multiplex immunoassay platform. 82 biomarkers and 6 algorithms were explored. There were 351 NSCLC samples (90.3% Stage I, 2.3% Stage II, and 7.4% Stage III/IV). RESULTS: We identified 33 protein biomarkers and developed a classifier using Random Forest. Our test detected early-stage Non-Small Cell Lung Cancer (NSCLC) with a 90% accuracy, 80% sensitivity, and 95% specificity in the validation set using the 33 markers. CONCLUSION: A specific, non-invasive, early-detection test, in combination with low-dose computed tomography, could increase survival rates and reduce false positives from screenings

    SILHIL Replication of Electric Aircraft Powertrain Dynamics and Inner-Loop Control for V&V of System Health Management Routines

    Get PDF
    Software-in-the-loop and Hardware-in-the-loop testing of failure prognostics and decision making tools for aircraft systems will facilitate more comprehensive and cost-effective testing than what is practical to conduct with flight tests. A framework is described for the offline recreation of dynamic loads on simulated or physical aircraft powertrain components based on a real-time simulation of airframe dynamics running on a flight simulator, an inner-loop flight control policy executed by either an autopilot routine or a human pilot, and a supervisory fault management control policy. The creation of an offline framework for verifying and validating supervisory failure prognostics and decision making routines is described for the example of battery charge depletion failure scenarios onboard a prototype electric unmanned aerial vehicle

    Failure Analysis in Conceptual Phase toward a Robust Design: Case Study in Monopropellant Propulsion System

    Get PDF
    As a system becomes more complex, the uncertainty in the operating conditions increases. In such a system, implementing a precise failure analysis in early design stage is vital. However, there is a lack of applicable methodology that shows how to implement failure analysis in the early design phase to achieve a robust design. The main purpose of this paper is to present a framework to design a complex engineered system resistant against various factors that may cause failures, when design process is in the conceptual phase and information about detailed system and component is unavailable. Within this framework, we generate a population of feasible designs from a seed functional model, and simulate and classified failure scenarios. We also develop a design selection function to compare robust score for candidate designs, and produce a preference ranking. We implement the proposed method on the design of an aerospace monopropellant propulsion system
    • …
    corecore