
Quantifying the Resilience-Informed Scenario Cost Sum (RISCS): A
Value-Driven Design Approach for Functional Hazard Assessment

Daniel Hulse
Graduate Research Assistant

School of Mechanical, Industrial
and Manufacturing Engineering

Oregon State University
Corvallis, Oregon 97330

Christopher Hoyle ∗
Associate Professor

School of Mechanical, Industrial
and Manufacturing Engineering

Oregon State University
Corvallis, Oregon 97330

Kai Goebel
Tech Area Lead

Discovery and Systems Health
Intelligent Systems Division

NASA Ames Research Center
Moffett Field, California 94035

Adjunct Professor
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ABSTRACT
Complex engineered systems can carry risk of high failure consequences, and as a result, resilience–the ability

to avoid or quickly recover from faults–is desirable. Ideally, resilience should be designed-in as early in the design
process as possible, so that designers can best leverage the ability to explore the design space. Towards this
end, previous work has developed functional modeling languages which represent the functions which must be
performed by a system and function-based fault modeling frameworks have been developed to predict the resulting
fault propagation behavior of a given functional model. However, little has been done to formally optimize or
compare designs based on these predictions, partially because the effects of these models have not been quantified
into an objective function to optimize. The work described herein closes this gap by introducing the resilience-
informed scenario cost sum (RISCS), a scoring function which integrates with a fault scenario-based simulation, to
enable the optimization and evaluation of functional model resilience. The scoring function accomplishes this by
quantifying the expected cost of a design’s fault response using probability information, and combining this cost
with design and operational costs such that it may be parameterized in terms of designer-specified resilient features.
The usefulness and limitations of using this approach in a general optimization and concept selection framework are
discussed in general, and demonstrated on a monopropellant system design problem. Using RISCS as an objective
for optimization, the algorithm selects the set of resilient features which provides the optimal trade-off between
design cost and risk. For concept selection, RISCS is used to judge whether resilient concept variants justify their
design costs and make direct comparisons between different model structures.

1 Introduction
Complex engineered systems such as nuclear power plants, aerospace vehicles, and oil rigs are often associated with

large investments and significant failure consequences. High-profile failures in these systems, such as the Chernobyl disaster
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[1], Challenger catastrophe [2], and Deepwater Horizon oil spill [3] have caused deaths, environmental damage, and billions
of dollars of economic loss. It is therefore desirable to design the systems in such a way that minimizes risk and responds
well to adverse circumstances so that performance, cost, and safety are maintained or recovered.

This goal presents a significant challenge, due to the inherent complexity of these systems. Indeed, complex engineered
systems comprise many components, each with many possible interactions. Despite each component having relatively
low failure probability, there is often only a poor understanding of compound failure risk. For example, in the aftermath
of the Challenger catastrophe, it was found that engineers’ estimates of overall failure probability differed by orders of
magnitude [2, see Appendix F]. While failures in complex systems are often attributed to poor management and operations,
they can often be traced to design flaws.

To address this challenge, risk and failure approaches have been introduced which help designers reason about failures
and their impact on the design [4], including failure modes and effects analysis [5], fault tree analysis [6], and model-based
approaches [7] [8]. However, these approaches do not generally consider resilience–the ability of the system to recover from
failures–since they are based on assessing failure only. Furthermore, these approaches are generally not suitable for early
design–the focus of this work–since they are based on detailed knowledge a fully realized system. To evaluate a design’s
failure risk without being locked-in to a specific realization, failure approaches have been formulated based on the functional
model of the system, since these are available earlier in the design process.

For preliminary and conceptual design, Functional Hazard Assessment has been recommended within the aerospace
industry as a method to enable designers to proactively identify hazards which happen at the functional level so that they
can be eliminated or mitigated by design [9] [10] [11]. Functional Hazard Assessment involves the systematic identification
of hazards associated with system functions and interactions [12] [10], and may be aided by building a fault model based
on the functional model of the system to capture the propagation of errors [13], or by building a dynamic model of how the
system interacts with its environment [14]. This model may then be further developed and added to through the rest of the
system assessment and design process [15]. While functional hazard assessment is a process to identify risks, it is not in and
of itself a design method, but instead simply informs the design process about relevant hazards in the system.

1.1 Prior Work
To incorporate functional hazard information in design, prior work introduced formal methodologies to enable designers’

use and understanding of the information. The function-failure design method (FFDM) to predict likely failure modes due
to the loss of functions using past data to show which functions require more design attention [16]. This was extended
in the risk in early design method (RED) using likelihood and consequence estimates to better inform designers [17] [18],
which has since been shown to better allow students to assess risk [19]. To analyze social and organizational hazards in
engineering systems, the Functional Resonance Analysis Method (FRAM) was developed to analyze hazards within socio-
technical systems based on high-level functional relationships [20], such as air traffic management [21]. This socio-technical
interaction has also been analyzed using a hierarchical functional decomposition of a system to identify hazards within
process plants [22] and food processing [23]. These tools are based on building tables or databases of previous faults which
occurred within functions, as well as their effects concurrently with a functional model.

Other approaches use function-based computational models to encode risks. Hierarchically Performed Hazard Origin
and Propagation Studies (HiP-HOPS) was developed as a tool to assess risk throughout a hierarchical system model by
integrating functional and classical techniques into a single consistent model [24]. Rather than modeling failures within
engineered systems as a result of component failures, the Systems-Theoretic Accident Model and Processes (STAMP) models
the dynamics of the organizational environment to find and redesign inadequate control processes that lead to failure [25] [26]
[27] [28]. The function failure identification and propagation method (FFIP) informs assessment by constructing a graph-
based behavioral model to take into account the function interactions, dynamics, and joint fault scenarios [8] which has
since been extended using flow-state logic to model undesired flow states [29] and dimensional analysis to incorporate more
detailed information about component behavior [30] and adapted for large-scale complex systems [31] and mechatronics
[32]. Inherent Behavior of Functional Models (IBFM), which is used in this paper, provided a method to automate the
creation of a state-based behavior model from the functional model itself [33]. Approaches have additionally been presented
which associate the functional model with a fault tree [34] [35] [36], and other methods have been created to focus on the
propagation of failures through a functional model [37].

Attempts have in turn been made to show how to generate, improve, or change the design based on these function-based
failure frameworks. Initially in developing these frameworks, the resulting information was simply used to show designers
where attention should be paid in making design choices [16]. Approaches have subsequently been presented to use graph
grammars to change the structure of the model, and/or use a cost-risk analysis scoring function to compare between design
alternatives [38] [39]. Additionally, an approach has been presented for designing the operational decision-making in the
model to determine when to, for example, route degraded flows to sacrificial subsystems [40]. While these approaches
show many of the design changes that can be made within a functional model, and can be used to compare between design
alternatives, they do not use this knowledge to formally optimize a design problem.
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A few approaches for formal optimization of risk within functional models have additionally been presented. Using the
HiP-HOPS risk modelling methodology, design optimization [41] and optimization of fault tolerance [42] has been demon-
strated. Additionally, using functional-failure-matrix approaches, the Risk and Uncertainty Based Concurrent Integrated
Design Methodology (RUBIC) first introduced the concept of using failure scenarios, probabilities, and costs to optimize
risk within a functional model to show where to allocate resources based on function-failure matrices used in FFDM [43].
Additionally, objectives been formed for the allocation of health management within a functional model informed by the ef-
fect of adding sensors, reducing failure probabilities, and changing inspection intervals on reducing overall design risk [44].
While these approaches show that some optimization has been performed in the context of function-failure methodologies,
no approaches have yet been presented for the graph-based fault models, such as IBFM and FFIP.

1.2 Aims and Contributions
The objective of this research is to create a framework for concept selection and optimization to approach resilient design

early using function-based fault models. Towards that goal, this paper presents the Resilience-Informed Scenario Cost Sum
(RISCS), a scoring function which integrates with a model-generated set of fault-event simulations to calculate the expected
cost of a design considering every fault scenario. This scoring function combines this expected cost of risk with the design
and operational costs to resolve the trade-offs inherent between cost, risk, and performance.

As a single, holistic design measure, this scoring can then be used as the sole value consideration both to guide early
design processes and to be given as an objective in optimization procedures. By using this measure, both processes can make
proactive, risk-informed design decisions at the earliest stages of design, while there is the most ability to meaningfully
impact design resilience. Using this scoring in typical systematic design process (such as that described in [45, see Chapter
2]), designers can compare a variety of early functional design concepts and determine how best to make key design deci-
sions, such as function structure, high-level functional requirements, and solution working principles. Using the scoring for
optimization, solution procedures may be developed and leveraged which allow designers to explore large spaces of design
concepts that would be difficult or impractical without computational support. For example, using this scoring an algorithm
could search extensive design catalogues for compatible solutions for each of the given functions of a model, a process that
would be painstakingly tedious for a team of designers to perform. This paper presents a general framework for integrating
the RISCS scoring with both types of design processes.

The authors previously presented the use of RISCS scoring in [46]. This paper further contextualizes the use of RISCS
by showing how it may be used for optimization and concept selection, and by presenting an expanded monopropellant
system design case study. To demonstrate how it can enable optimization and concept selection, use and adaptation of this
scoring function is shown in the optimization of control features and function structure selection for a monopropellant orbiter.
The next sections present background in function modelling and fault simulation, discuss research context and definitions
of resilience, introduce and construct the scoring function, present how the function may be used for concept selection and
optimization, and demonstrate the approach by applying it to design and optimization of a monopropellant orbiter.

2 Background
This paper relies on previous work in functional modelling and the IBFM toolkit to generate a fault model and existing

definitions of resilience to construct a scoring function. Both are discussed below.

2.1 Functional modelling
Functional modelling is a way of representing the concept of purpose in a system which has been described as a language

for conceptual design intention, a bridge between high-level decision-making and implementation [47], and a “blueprint”
for the future system which is agnostic of any particular form [48]. While a variety of modelling conventions have been
presented in general, function modelling represents a system as a set of functions which act on flows of energy, material, and
signal to accomplish a given task [47]. This specific representation of functionality is one of many system representations of
products, but is uniquely useful for its lack of ambiguity and ability to be reused and transformed to simulate behavior [49].
It has long been a part of the engineering design curriculum [50] [45] [51] and has subsequently been standardized as a part
of the systems design process [52] [53].

The representation used in this paper follows the convention described in [48]. Flows can represent any sort of material,
energy, or signal which passes through the system, while functions represent any operations that happen to the flows on
their way through the system which are necessary for accomplishing the overall purpose of the model, which are stated as
verb-noun pairs. Using this approach, a typical way to develop a functional model is to create a black-box model of the
system which states the overall function with all of the known flows going in and out of the black box. The designer then
creates function chains by “following the flow,” identifying and sequencing the operations that must be done to the input
flow to transform the input flow into the output flow. Finally, the function chains are aggregated and connected as needed to
create the overall functional model.
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Fig. 1. Illustration of a fault propagation simulation using IBFM. A fault propagates from an initiating mode through the flows of the functional
model until it produces an end-state with resulting fault modes and flow health states.

2.1.1 IBFM simulation and model definition
This paper uses the Inherent Behavior in Functional Models (IBFM) modeling language to simulate the fault propagation

behavior of a system given its functional model. IBFM was developed for this purpose, with a focus on speed and ability to
simulate large sets of joint-fault scenarios [33]. This tool acts by constructing a behavioral model from the functional model
by associating behaviors with functions and states with flows. The resulting behavioral model can be used to generate a set
of failure scenarios based on individual or combinations of fault events which are then propagated through the model until an
end-state is reached. Because this propagation runs as a state machine (and not a set of differential equations), the simulation
allows for many sets of faults to be run quickly. Important related terminology is listed below as it integrates directly with
the framework presented in this paper:

Fault scenario: A particular instance of the IBFM model for one specific fault event (notated e). IBFM generates a list
of fault scenarios E depending on the number of joint faults considered in a run.
End-State: The result of a fault event being run to completion f , inclusive of the final modes and flow states.
Mode: A state of a function m which is associated with a particular behavior. Modes are either fault modes, implying
an undesired behavior, degradation, or loss of function, or nominal modes, implying that the function is operating as
desired. In this paper, we differentiate two types of fault modes: initiating fault modes (in e), which are the initial faults
which generate a scenario, and conditional fault modes (in f ), which happen as a result of other faults.
Condition: A rule that specifies a function’s change in mode as a function of incoming flow health state.
Behavior: A property of a mode which determines how incoming flow health states determine outgoing flow health
states.
Health State: The quality of the flow represented as a combination of properties~s given to rate and effort variables that
may take the value zero, low, nominal, high, or highest.
Rate Variable: A state of flows representing rate, a concept analogous to throughput or velocity.
Effort Variable: A state of flows representing effort, a concept analogous to force or pressure.

To illustrate what these terms mean in the context of an IBFM simulation, a simulation of a single fault scenario is shown
in Figure 1. As can be seen, a scenario starts with a fault event–a set of initiating fault modes which change the flow states
output from the functions. After the health states are propagated through the model, the simulation settles at an end-state
comprising the final state of the flows and the conditionally-triggered fault modes.

2.2 Resilience
A number of definitions of resilience have been introduced across a variety of fields, including ecology [54] [55] [56],

psychology [57] [58], economics [59] [60], sociology [61], network science [62] [63] [64], and management [65] [66]
(particularly the management and design of supply chains [67]). Resilience is broadly defined as the ability of a system
to prepare for, absorb, recover from, and adapt to failure events, and resilience strategies typically focus on the temporal
adaptation to failures, as opposed to risk management, which is more focused on preventing the failure events [68]. However,
definitions and metrics for measuring resilience vary across and within fields, with both qualitative and quantitative metrics
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[69]. Key dichotomies include:

Engineering resilience and ecological resilience: In engineering resilience, the performance and stability of the system
state is recovered to the original system state while in ecological resilience the function of the system is recovered from
a static failure state to a new dynamic state, potentially as a result of a change in components (e.g. similar species taking
the role of a newly-extinct species) [55].
Deterministic and probabilistic measures: Probabilistic measures consider the uncertainty of disruptions or failure
events while deterministic measures do not [69].
Dynamic and static measures: Dynamic measures take into account time-dependent behavior while static measures
do not [69].

Of particular interest to this paper is how to use the concept of resilience to motivate design decision-making in engi-
neering design. As with the broader fields of science, definitions and metrics of engineering resilience vary; however, the
time-based response to disruptive events is key [70]. Within engineering design, recoverability, defined as a product of the
diagnosis capability, resource availability, and repair capability of the system over time has been proposed as an indicator
or overall system resilience [71]. While these metrics capture resilience as a metric, they are incomplete as design metrics
because they do not incorporate the trade-offs between resilience and other cost and performance considerations–the goal of
the metric presented here.

2.3 Decision-based Design
In order to create a metric suitable for design which resolves the trade-offs between resilience and other cost and perfor-

mance considerations, this paper relies on previous work in decision-based design. Decision-based design is an engineering
framework which views engineering as a decision-making process analogous to known work in decision theory [72]. These
frameworks rely on the axiomatic definition of utility presented by Von Neumann and Morgenstern in [73]–seeking to maxi-
mize the statistical expectation of the utility of a design [74] [72] [75]. This utility is often calculated directly as a profit value
(as in [76]), but may often be a function of a profit value, when different profit levels result in different marginal utilities [73].

Decision-based design approaches risk in design as a lottery. To illustrate, if a design x could lead to only two possible
outcomes, 1 and 2, with utilities u1(x) and u2(x), and outcome 1 has probability p(x), the expected utility U(x) of that design
is:

U(x) = p(x)∗u1(x)+(1− p(x))∗u2(x) (1)

Considering this, a design where p(x) = 0.5, u1 = 200, and u2 = 0 is equivalent to a design where p(x) = 1.0, u1 = 100, and
u2 = 0, since both have the same expected utility of U = 100. Alternatively, a design where p(x) = 1.0, u1 = 100, and u2 = 0
would be preferred to a design where p(x) = 0.9, u1 = 100, and u2 = 10, since it has a higher total utility (100 > 91).

Because Decision-based design is ultimately a quantitative framework, it lends itself to optimization [76]. For industry
applications, this is generally approached by balancing a cost model against a consumer-choice-based demand model to
determine how profitable a design will be, and, consequentially, how much utility it provides [77]. Within the systems
engineering community, it has developed into the value-driven design framework, which seeks to quantify the cost and value
of attributes in order to truly optimize a design, rather than impose requirements [78].

Previous work has used similar expected-value based metrics to approach design risk. Expected cost was first proposed
as a replacement to the Risk Priority Number in Failure Modes and Effects Analysis in [79], due to inherent definitional flaws
which lead to inconsistent risk priorities in existing practice. In [44], expected-cost-based objectives were formed for the
allocation of health management within a functional model. Further work has shown how to use expected value metrics based
on the quantified the cost of reacting to failure events to represent the value of resilience [80]. Furthermore, [38] developed a
function to represent resilience in a function fault-scenario context. This work seeks to build on these approaches by further
showing how to integrate design costs, fault probabilities, and scenario costs with a fault model to enable optimization and
concept selection

3 Quantifying RISCS: A Scenario-based Scoring for Function-based Fault Models
To aid decision-making between different functional models based on fault simulation information, this paper intro-

duces the Resilience-Informed Scenario Cost Sum (RISCS), a scoring function which incorporates the trade-offs between
a system’s design costs, operating costs, and failure behavior. Of particular interest is this function’s approach to modeling
failure behavior, which is built on IBFM’s conception of a fault scenario–a set of faults which yield an end-state. The basic
form of this function is a sum of the design costs CD, operating costs CO, and fault event costs CE as shown in the following
equation:
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C =CD +CO +CE (2)

This scoring is quite similar in form to that devised in [38] in that it considers trade-offs between design and operation costs,
and the response of the system to various failure events. However, the main difference is the applicability to design factors
and integration with function-based fault model definitions. While the scoring function devised in [38] merely considered
the cost of mitigating factors which reduced the probability of end-states, the function introduced here is generally applicable
to all mitigating actions and design changes, and is more closely integrated with the results of IBFM simulations, as will be
shown in the following sections.

3.1 Design Cost
Design costs resulting from design changes depend on the considered design problem. This is because, in general, design

costs come from a variety of sources, including research and development, required materials, procurement, manufacturing,
and integration. For design purposes, this paper considers that the design costs of a given functional model can be represented
as individual costs within each function. As is the approach with risk and failure modes [16], these costs can in turn be
estimated based on an organization’s past costs for those functions. In this case, the resulting equation for design cost CD is
then:

CD = ∑
n∈N

Cn (3)

where Cn is the cost of a given function n in the set of all function instances in the model N.

3.2 Operation Cost
As with design costs, operating costs must be estimated based on an expectation of the system which may result from

past performance or a designer-created parametric model specific to the problem. While the method for determining the
operating costs will vary depending on the considered problem, in general they relate to the individual flows going in and
out of the black-box form of the model. Flows going into the model can result in costs (such as those having to do with raw
materials and energy) and revenues (such as those that take in waste material), as do flows going out of the model, with costs
potentially resulting from waste streams and revenues resulting from useful goods created. In general, the operational cost
CO then follows the form:

CO = ∑
l∈L

Cl−Rl (4)

where Cl and Rl are the respective costs and revenues associated with the flow l in the set of inflows L entering and leaving
the black box model.

It should be noted that, as will be the case in the case studies, these Cl and Rl terms need not stand for explicit costs and
revenue in dollars generated, but can also stand for the normative goods, utility, or externalities created and destroyed by the
organization. That is, if the organization has a normative goal (e.g., generate science, provide public infrastructure, etc) that
does not explicitly lead to more or less revenue, the goods created or destroyed by the organization by pursuing this goal can
be quantified and incorprated as if it were a direct cost or revenue.

3.3 Fault Scenario Cost
Key to representing resilience in a system is the time-based response to a large number of disruptions or threat vectors

[81]. This paper’s incorporation of these disruptions is based around IBFM’s ability to simulate large numbers of fault
events, which are created by initiating a set of fault modes which propagate through the model until an end-state is reached.
These events have costs, which are determined from the system’s response to the events in terms of end-state flow-states and
modes, and probabilities, which are determined by the probabilities of the initiating fault modes. The cost of fault events is
calculated as an expected cost–the cost of each event is weighted by its probability. The resulting fault event cost CE follows
the general form:

CE = ∑
e∈E

Pe ∗Ce (5)

where Pe and Ce are the respective probabilities and costs of fault event e in the set of considered events E. Assuming the
probability of individual fault modes in a scenario are independent, the probability of a given scenario is simply the product
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Fig. 2. Costs associated with a failure event in a resilient system.

of the probability of the specific combination of originating faults occurring multiplied by the probability that the rest of the
system remains nominal as follows:

Pe = ∏
m∈e

Pm ∗∏
n6∈e

(1− ∑
m∈n

Pm) (6)

where Pe is the probability of a given fault event e, Pm is the probability of a given initiating fault mode m in event e occurring,
and n is a function that does not have a fault in the event e.

As an expected cost metric, this fault scenario cost bears structural similarities to the Risk Priority Number (RPN)
used in Failure Modes and Effects Analysis (FMEA), in that it multiplies the probability of a fault with the severity of the
consequences of the fault. Aside from that basic similarity, there are a number of differences between an expected cost metric
and an RPN, as listed in [79]. Unlike the RPN, expected cost uses real probabilities and costs, making it a consistent metric
for risk prioritization, and a valid metric to trade off with with design and operational costs. While the criticality rating used
in Failure Modes, Effects, and Criticality Analysis is in general a consistent risk prioritization metric [79], it still lacks the
key property of allowing trade-offs with design and operational costs.

To further consider resilience in an expected cost setting, this work extends the definitions of expected cost by consid-
ering three distinct stages in the system’s failure and recovery which in turn map to three distinct costs. These costs are, as
shown in Figure 2: the cost of failure state C f , the cost of mitigating or repairing the failure C f→r, and the cost of partial
recovery Cr. This definition lines up with common definitions of resilience, in which the system starts at a nominal stable
condition, enters an unstable state due to a disruption, and then settles in a new recovered stable condition [82]. The resulting
fault event cost follows the form:

Ce =C f +C f→r +Cr (7)

These cost definitions integrate with IBFM simulations as follows:

C f results from the scenario end-state of the associated initiating fault event e,
Cr results from the scenario end-state of a new fault event simulation, with a chosen set of modes repaired, and
C f→r results from the cost of repairing the modes present in the end-state of the associated fault event e not used as fault
modes in the recovered fault event simulation.

This process of running a failure scenario, selecting modes to repair, and running a new fault simulation based on the
unrepaired modes is shown in Figure 3. It should be noted that this fault re-simulation (and resulting cost) is only necessary
for the special case in which only a partial recovery is attempted or possible. When all of the modes are recovered (i.e. a full
recovery), no new fault simulation is needed since the end-state will be nominal, resulting in zero partial recovery cost Cr.
Alternatively, if it is impossible to repair the modes and/or no recovery is attempted, no additional cost results from recovery
or partial repair–instead the costs merely result from the failure state. Calculating each of these costs is discussed in the
following sections.
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Fig. 3. Illustration of fault re-simulation required to capture the costs of partial recovery Cr .

C = ∑
n∈N

Cn +∑
l∈L

Cl−Rl + ∑
e∈E

(∏
m∈e

Pm ∗∏
l 6∈e

(1−∑
m∈e

Pm)∗ ( max
m∈ f∩6∈r

(tm)∗∑
l∈L

c̄l [~s f ,l ]+ ∑
m∈ f∩6∈r

Cm + tr ∗∑
l∈L

c̄l [~sr,l ])) (8)

Table 1. Cost rate of an individual flow state for flow l based on combination of rate and effort health states.

Effort Rate Health

Health Zero Low Nominal High Highest

Zero c̄l [00] c̄l [01] c̄l [02] c̄l [03] c̄l [04]

Low c̄l [10] c̄l [11] c̄l [12] c̄l [13] c̄l [14]

Nominal c̄l [20] c̄l [21] c̄l [22] c̄l [23] c̄l [24]

High c̄l [30] c̄l [31] c̄l [32] c̄l [33] c̄l [34]

Highest c̄l [40] c̄l [41] c̄l [42] c̄l [43] c̄l [44]

3.3.1 Failure Cost
Failures result in costs because they degrade the important flows leading in and out of the system, resulting in higher

costs, less revenue, or less utility. To determine the costs of specific failure events, specific costs must be associated with the
flow health states present in the end-state of the fault event. These flow states are defined as the quality (zero, low, nominal,
high, or highest) of a flow’s rate and effort components. The general form of a specific matrix c̄l for flow l is shown in Table
1. Note that these, as specific costs, are the cost per unit time until the failure is mitigated, as the total cost of a failure depends
both on both the severity of the failure state and the amount of time the system is in the failure state. As was discussed in
Section 3.2, these important flows must be identified by the designer with costs included.
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The cost of the failure part of the fault event can then be calculated using the state of the flows going in and out of the
model and the time taken to mitigate the failure as follows:

C f = t f ∗∑
l∈L

c̄l [~s f ,l ] (9)

where C f is the cost of the failure scenario end-state f that is the direct result of the simulation of fault event e, t f is the
time taken between the failure and the recovery, l is a given flow in the set of input and output flows L, c̄l is the specific cost
matrix for that flow, and~s f ,l is the end-state of that flow l in the given scenario f .

The recovery time is the time necessary to repair the individual failure modes which are in the failure scenario but not
in the recovered scenario. Considering that the repairs may be done in parallel, this time can be calculated as the maximum
of the times tm needed to repair each failure mode m in the failure scenario end-state f but not in the recovered scenario r.

t f = max
m∈ f∩6∈r

(tm) (10)

3.3.2 Mitigation Cost
The cost of mitigation is a result of repairing the failure modes in the failed system scenario that are not present in the

recovered system. This cost C f→r is calculated as the sum of the cost Cm of recovering each mode m which is present in the
failure scenario end-state f but not in the recovered scenario r, per the following equation:

C f→r = ∑
m∈ f∩6∈r

Cm (11)

As with the other costs, this mode recovery cost Cm can be estimated based on past data or assumptions about the future
system regarding the repair/replacement processes required for each function.

3.3.3 Partial Recovery Cost
Finally, the cost associated with the recovered system is the cost of the degraded flows still present in the end-state

recovered system due to unrepaired or unrecoverable failure modes. This may be calculated similarly to the failure cost, by
running a new fault scenario using the failure modes in the recovered state, as shown in Figure 3 This partial recovery cost
Cr is a result of the time left in the recovered state (i.e., for the remaining life of the system) tr and the specific costs c̄l of the
state~sr,l in the recovered end-state r of the flow l in the set of input and output flows L. This is shown in the equation:

Cr,R = tr ∗∑
l∈L

~cl [s̄r,l ] (12)

These costs are calculated over the rest of the life of the system. If the system is meant to operate for a long time, a discount
factor should be applied based on the time value of money for the organization.

3.4 Summary
The previous sub-sections discussed how to calculate the costs of a system considering the design, operational, and fault

scenario costs using the IBFM simulator, with special consideration of resilience–the ability to recover from failures. While
this metric may be calculated differently depending on the considered design problem, when stated as a single expression
using the constructions developed in the previous sections, the equation for RISCS takes the form shown in Equation 8,
where:

C is the total RISCS
Cn is the cost associated with the design of a function
n is a function
N is the set of function instances in the model
Cl is the cost associated with an input or output flow
Rl is the revenue or utility associated with an input or output flow
l is a flow
L is the set of input or output flows
e is a fault event, a combination of fault modes
E is the set of considered fault events
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Fig. 4. Framework enabled by integrating cost-based scoring and fault simulation. The designer sets up a parameterized design problem
which is then solved by an optimization algorithm.

m is a fault mode
Pm is the probability of a fault mode
f is the resulting fault scenario end-state of the fault event e
tm is the time taken to repair a mode
r is the recovered scenario that is the result of repairing fault modes in f
c̄l is the cost function of the flow based on its state
~s f ,l is the state of the flow l in the scenario end-state f
Cm is the cost associated with repairing a fault mode
tr is the time remaining between recovery and the end of life of the system
~sr,l is the state of the flow in the recovered scenario

4 Applying RISCS to Optimization and Concept Selection
This paper proposes and demonstrates the use of the RISCS score enumerated in Section 3 for functional model concept

generation and selection. As will be discussed in this section, this can be performed in two ways: in an optimization pro-
cedure in which the RISCS score is parameterized over a defined space of variables of interest or to evaluate and compare
different concepts of interest to the designer. While following subsections discuss both of these applications and and demon-
strate them in the design and selection of resilient features in a monopropellant system, an elementary example is provided
first to provide conceptual insight.
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Fig. 5. Functional model of a signal-carrying medium, with modes, conditions, costs, and probabilities associated to each function.

4.0.1 Elementary Example
To briefly illustrate the use of RISCS scoring, the design of a signal-carrying medium is considered, as shown in Figure

5 with modes and conditions as they would be modeled in IBFM (albeit for forward propagation of faults only, without
separate rate and effort states). As shown, there are two initiating failure modes in the Import Signal function (no input
signal and an infinite (shock) signal) and one condition and resulting conditional mode in the Guide Signal function (a
condition specifying that the function enters the failed mode when a shock signal is received, and a failed mode which makes
the output signal zero if it receives a shock signal). The resulting failure costs are shown in the Export Signal function,
based on the system exporting a zero, nominal, or shock signal.

To illustrate how RISCS scoring can aid design decision-making, two designs will be considered: one in which the
Guide Signal condition exists (Design 1), and one in which it does not (Design 2). These designs each have two
scenarios resulting from the initiating fault modes: the scenario in which the incoming signal is failed with a value of zero,
and one in which a shock enters the signal (e.g. from a short circuit). In the first scenario, the expected cost is the same
for both designs. The zero signal state propagates from the Import Signal function to the Export Signal function,
resulting in a cost of failure resulting from the cost rate of the failed flow state, the time needed to repair the fault, and the
cost of repairing the fault:

CS1 = Pf 1 ∗ (C f ∗ tr +Cr)

= 0.01∗ (−100∗5−100) =−6

In the second scenario, the expected cost is different for each design, due to the differences in fault propagation. In the
first design, the shock causes a failure mode in the Guide Signal function, resulting in a zero flow state in the Export
Signal function, and costs from the failed (zero) flow state and the times and costs needed to repair the Import Signal
and Guide Signal functions. In the second design, the shock propagates through the Guide Signal function, result-
ing in costs from a failed (inf) flow state and the time needed to repair the function. The resulting expected costs are tabulated
for each design below:

CS2 = Pf 2 ∗ (C f ∗ tr +Cr)

= 0.001∗ (1000+100+100∗10) =−2.1
= 0.001∗ (1000+500∗10) =−6

When the expected failure costs are combined with design and operational costs, the overall costs can be tabulated.
In this example problem, it is assumed that the designs had the same operational costs, and design costs of −2 and −1,
respectively. The resulting cost score is tabulated in Table 2. As can be seen, while Design 1 has slightly more design cost,
the lower expected cost resulting from not propagating the shock flow results in a better overall cost score. Given different
numbers for probabilities, repair times, and costs, however, this result would change. For example, if the Guide Signal
function had a repair time of 100, the resulting repair time would make the expected cost of failure of Scenario 1 for Design
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Table 2. Cost comparison of Design 1, as shown in Figure 5, and Design 2, with the condition removed.

Costs Design 1 Design 2

Design -2 -1

Operational 20 20

Scenario 1 -6 -6

Scenario 2 -2.1 -6

Total 9.9 7

1 −11.1, making the overall cost score worst than that of Design 2. Alternatively, if said design had commensurately lower
design or operational costs, this design would still be superior using this method. This demonstrates how RISCS scoring can
be used to trade off the modeled dynamic failure response, failure costs and probabilities, and design and operational costs
to determine if a resilient feature should be added to a design.

4.1 Optimization
To optimize functional models based on the RISCS score, this paper proposes the general framework shown in Figure

4: the designer defines an initial functional model and creates a behavioral model by associating conditions, behaviors, and
modes with the various functions as presented in [33] using IBFM. The designer then associates costs and probabilities with
the various modes, functions, and flow states, and defines the changes to be explored within a parameterized cost scoring.
This cost scoring is then optimized by an appropriate algorithm by running the fault simulation, scoring the design, and
changing the parameters until an optimal design is found. This enables the designer to explore a large space of design alter-
natives in a systematic, automated way without a tedious investigation of every model variant. This approach is demonstrated
in Section 4.3.1 and discussed below.

In order to explore a large space of design changes, the RISCS must be parameterized over a space of possible design
changes that may be made to the model. A variety of design changes which may be pursued in the context of function-
based fault modelling have been presented previously in [38] [40], which are compiled along with changes pursued in other
function-failure optimization approaches ( [44] [43]) along with new design changes which have been identified by the
authors in Table 3. As can be seen in the right side of the table, each design change has associated potential difficulties
which may make it difficult to effectively model or predict its effect, but also may provide value depending on the design
problem considered. A key difficulty common to many different design changes is predicting how a change will effect the
design and operating costs of the functional model given the different couplings which may occur, for example, due to the
working, constructional, and system interrelationships which are developed later in the design process. Such couplings are
prevalent in the embodiment design stage of highly-coupled engineered systems, and provide significant challenges to design
coordination [83].

However, due to the principal nature of the functional representation of the design, especially in the context of risk,
many of these concerns may be considered to be second-order in nature unless it is known that the future design will be a
highly coupled system. In general, the parameters to be optimized in these systems are either structural (which sizing and
configuration do not influence, but instead flow out of), high-level features to be added (which do not necessarily impact
performance), or operational (with very little coupling). Depending on the design case, the designer may choose to use the
informal approach to only parameterize a subset of the design problem that can be readily modeled. Alternatively, sufficient
resources (e.g. design catalogues, known physical effects, or cost models) may be available for certain problems, depending
on how much is already known about the design space. While many of the challenges presented in Table 3 can be avoided
depending on the context and purpose of the optimization, future work should provide a means to address them in the general
case.

Additionally, optimizing each of the design changes shown in Table 3 will require different solution strategies depending
on the variable type. Structural design variables such as redundancy, function order, and flow paths will likely need to
be approached using a graph grammar-based computational synthesis framework, as has been shown in [84] [85], since
the function structure is fundamentally a graph. However, the internal-functional or operational parameters may require
different algorithms depending on how RISCS is represented and parameterized. For example, a gradient-based search may
be performed over the parameters of the assumed realization of the function (e.g. sizing, quality, etc), while an evolutionary
or direct search method is used to determine the modes to recover or conditional logic. Because of the different algorithms
that lend themselves to each design change, optimizing multiple variable types at once may require a specialized solution
strategy such as a multidisciplinary design optimization [86] to allow each parameter to be optimized appropriately.
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Fig. 6. Functional Model of Base Monopropellant System

4.2 Concept Selection
When the space of designs is difficult to parameterize, the RISCS score may instead be used to compare and select

individual solution concepts. For example, totally different solution concepts may be difficult to credibly generate and
evaluate in an optimization process if the costs and modeled behavior of functions changes depending on the intended
purpose in the model. When the designer encounters this problem, or simply wishes to give more attention to how individual
solution concepts would work, they may instead use the following process to generate and select designs:

1. Define the functional concepts to consider
2. Construct fault model by associating conditions, behaviors, and modes with each concept’s functions
3. Associate costs and probabilities with modes, functions, and flow states for each concept
4. Run IBFM fault simulations for each and tabulate RISCS score
5. Choose the best-scoring concept

This process is essentially the same as the the optimization process shown in Section 4, except instead of parameterizing the
space of changes and applying an algorithm, each of the concepts are generated individually at the beginning. However, in
this process there is more ability for the designer to gain insight into the design problem itself, gain knowledge to influence
future designs, and devise new features or re-think the design problem, as they receive direct feedback from the model. This
approach is demonstrated in Section 4.3.2 to compare resilient features in the design of a monopropellant system.

4.3 Case Study: Design of Monopropellant System
The following section demonstrates application of RISCS to the design of a monopropellant orbiter, a system previously

considered in [38] and introduced as an example system in [87]. Monopropellant propulsion systems are named as such
because they do not require a separate oxidizer, and are commonly used in spacecraft for attitude control, and sometimes
to provide primary thrust. The functional model of the monopropellant system is shown in Figure 6. Heat is applied to an
inert gas to expand, and the gas is regulated to an appropriate temperature and pressure. The expanded gas then pushes a
propellant over the catalyst. As propellant passes over the catalyst, it reacts, resulting in thrust.

The overall value generated by this system is a result of the quality of the thrust function, and the costs are a result of
any design costs incurred by each function. In the formulation of the RISCS score considered in this application, only these
trade-offs are considered for simplicity to illustrate the approach. As a result, only a few components must be considered
in the cost function (design and failure state costs), since operational costs are assumed to be constant between concepts.
Additionally, because of the context of the system, which operates in space, where there is no ability to repair or maintain
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the system, the repair costs and future state costs are not included in this function. The resulting cost function is:

∑
n∈N(~x)

Cn(~x)+ ∑
e∈E

Pe ∗ (C̄l [~s f (~x),l ]) (13)

where the notation is consistent with that outlined in Section 3, except Pe is the probability of an event (which does not
change with changes in condition), tm is an (assumed constant) mitigation time, E is the set of single fault (and no-fault
scenarios), C̄l is the cost matrix for the thrust function (the only desired output flow) which has values shown in Table 4
which are again scaled to consider different failure costs, and~x is the given design.

4.3.1 Optimization of Controlling Functions
This section applies the RISCS function to the optimization of controlling functions within the functional model of the

variant of the monopropellant system shown in Figure 14 in Appendix 6. Controlling functions refer to the functions in the
model which change the response of the system based on a signal indicating a change in flow. In this study they represent the
high-level requirements for the control systems of the regulating functions in case of a degradation or failure in the upstream
flows. That is, they represent whether the system should be designed to recover a flow (which would compensate for the
failure but increase initial design costs) or keep the flow state constant. In the model of the monopropellant propulsion
system, these functions are control gas rate, control gas pressure, control propellant temp/pressure, and control propellant
rate. When the system is realized, these might be manifested as logic gates, control circuitry, or any system which takes
actions based on an input. This is represented in IBFM as changes in conditions which cause the system to enter modes with
different behavior.

Fig. 7. Example controlling function conditions and modes.

To illustrate, in the function definition shown in Figure 7, the modes EqualControl, IncreaseControl, and
DecreaseControl each refer to behaviors in which the controller keeps the incoming flow state, increases the incoming
flow state, and decreases the incoming flow state, respectively. Similarly, the conditions LowSignal, HighSignal,
NominalSignal refer to a lower-than-nominal, higher-than-nominal, and nominal flow state, respectively. Finally, the
conditional logic specifies which mode to enter based on the condition. For example, 1 3 to 2 means the function
increases the flowstate by entering mode 2 (IncreaseControl) when it was previously in mode 1 (EqualControl) or
3 (DecreaseControl).

This problem is readily encoded as an integer vector and can be solved using an evolutionary algorithm following the
general optimization framework shown in Figure 4. Although many integer programming approaches are possible (indeed,
a direct search method may be more efficient, and the space of designs is small enough to be searched with a brute force
method), the evolutionary algorithm was used in this paper in which the initial population is initially seeded with the solution
of EqualControl for each state of each condition in each function to speed the solution process.

As can be seen in Figure 8, the use of this algorithm increases the overall RISCS significantly from the baseline design
cost. This results in a design shown in Figure 5. As can be seen, while expensive recovery options are avoided (such as
attempting to increase the final flow of propellant in Controller 4), less expensive recovery features are added in order to
achieve the best RISCS score. This demonstrates the ability of the RISCS score to integrate with an optimization framework
to systematically explore the space of design variants.

4.3.2 Comparing Model Structures
This section applies the RISCS function to compare different design concepts for adding resilience to the monopropellant

system. Each of these variants are shown in Appendix 6, and were constructed by adding additional functions, conditions,
and behaviors to the baseline IBFM model to account for the added resilient feature. The design variants considered were:

1. Redundant Gas Tanks: The Contain Inert Gas and Expand Gas functions are made redundant, as shown in Figure 10.
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Fig. 8. Cost optimization of the functional model using the evolutionary algorithm, showing how value can be increased using the presented
optimization framework.

2. Redundant Thrusters: The Contain Catalyst and Catalyze Propellant functions are made redundant, as shown in
Figure 11.

3. Auxiliary Heat-recovery system: An auxiliary system powered by the heat from the combustion from the propellant is
added to expand the gas in case the heat source is lost, as shown in Figure 12.

4. Redundant Pressure Regulators: An additional pressure regulator is added which activates when the operating pres-
sure regulator fails, as shown in Figure 12.

5. Optimized Control Features: The control features optimized in Section 4.3.1 are used in the design, as shown in Figure
13.

As can be seen in the functional models for each design variant, each resilient features adds initial design cost. In order
to calculate the design scoring in Equation 13, however, each model must be run to determine the resulting failure costs.
The results for failure costs resulting from each of these model runs is shown in Figure 9, along with the initial design costs
and total costs. For clarity, these are displayed as differential costs from the baseline, to show which features “pay off” by
reducing failure costs above their increase in design cost, and which do not.

As shown in Figure 9, as simulated in the model, Variant 1 and Variant 2 (redundant gas tanks and redundant thrusters,
respectively), are not worth their design cost because they negligibly improve the overall failure cost. This is because, in
the model, these systems have a low probability of faults and relatively high design cost. On the other hand, the features in
Variant 3, 4, and 5 do pay for themselves in terms of failure cost. In Variant 3, because the Import Heat function was modeled
with a relatively high fault probability, the heat recovery feature was able to reduce the impact of this fault substantially. In
Variant 4, the redundant pressure sensor is able to increase the scoring function simply because the design feature (a sensor)
is relatively inexpensive, even though the change in failure cost is low. Finally, in Variant 5, while the design feature is
relatively expensive, it is able to reduce a large amount of failure cost, allowing the feature to justify itself in terms of the
cost score.

4.4 Discussion
The previous sections presented and demonstrated approaches for the RISCS scoring function for optimization and con-

cept selection. In both of these approaches, using the RISCS score enables design decision-making based on a fault model
by incorporating cost and risk information. For optimization, RISCS scoring is helpful in that it provides a comprehensive
resilience-informed objective function that can be optimized. As discussed, this optimization process may only occur, how-
ever, when the RISCS score may be parameterized over a space of design changes. While these variables are provided, along
with a simple example of using the optimization framework on a narrow space of changes, creating a broad parameterization
of a model that is accurate may be difficult. Indeed, even in this case study, assumptions were made about the realized future
system which may or may not turn out to be correct. For example, while it was assumed in the case study that each flow
could be recovered by one health state by each controller, there may be health states that are unrecoverable, leading to poor
modelling of fault propagation behavior and an overly optimistic decrease in failure costs. Alternatively, the control features
may simply be impossible or more expensive than expected to realize, leading to an under-estimation of costs. These issues
will likely provide difficulties to applying the framework depending on the problem considered. Nevertheless, when the de-
signer does have accurate information, the framework provided here allows them to find the optimal version of their concept,
allowing risk reduction to happen earlier in the design phase.
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Fig. 9. Differential costs of design variants based on fault simulation.

For concept selection, RISCS scoring gives the designer a comprehensive decision-theoretic metric to compare between
two concepts encoded in function-based fault models. In Section 4.3.2, this metric was used to compare design variants that
had different resilient features, such as redundancies, recovery systems, and the optimized control system. While this scoring
was able to show which features were worth the cost, deciding which set of features to include requires further analysis. This
is because it is unknown how these features would interact with each other. For example, while the heat recovery system
and controlling features both increase the value of the design, using both features in the same system may be inappropriate if
both of them are reducing the same sources of risk, since each would reduce less failure cost if the other system was assumed
to be there. As a result, when using RISCS to compare design variants, the designer may need to generate new variants with
joint features with a high RISCS score to find the best configuration of features. Finally, while this RISCS scoring was used
for different variants of the same functional model, it is expected that this design metric could provide more impact when
used to compare wholly different design concepts, rather than variations of a single concept.

5 Conclusions
This paper presents a framework for considering resilience in early design using a resilience-informed scenarios cost

sum (RISCS) scoring function to resolve trade-offs between the expected design, operational, and fault response costs.
RISCS scoring integrates with a comprehensive scenario-based fault simulation which determines the propagation of faults
by mapping the costs of the failure event, its recovery, and the recovered states to flow states and failure modes in each
scenario. Approaches to using the scoring are presented, both for optimization and for comparing design concepts, which
are then demonstrated in the design of a Monopropellant system, first by optimizing resilient control features, and then by
comparing design variants with different function structures. Use of this cost score for these applications is shown to help
the designer find resilient features which “pay off”–reducing the expected cost of failure enough to justify their design and
operational costs.

5.1 Limitations and Future Work
The RISCS scoring presented here has a number of limitations which should be addressed to realize the full potential

of design for resilience. While Section 3 constructs RISCS in a way that integrates well with existing function-based fault
model definitions, it may need to be constructed differently based on the design problem to most effectively capture design
costs and risks. The following are limitations of the presented approach which may be addressed in future work:

Fault Probability Assumptions: As constructed in Section 3, failures are the result of fault events or joint-fault events,
the probability of which is determined based on the assumption that each fault has an independent probability. However,
in reality, many joint-fault scenarios may occur for which single-fault probability of failure is incorrect. For example,
if a meteoroid were to hit the monopropellant system, it might cause a number of joint faults with a single probability
for the event that does not derive independently from the functions themselves. While many of these events may be
considered as the modeled effects of fault propagation model, incorporation of non-independent joint faults will need
to be incorporated in future work to better consider risks. Furthermore, while the assumption that the expected cost
is the probability of the fault multiplied by cost holds true for small probabilities, it should be noted that over long
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timescales faults with small probabilities may be expected to occur multiple times. In these cases, for repairable faults,
the expected number of events occurring over the life-cycle of the system should be used for the expected cost, rather
than the probability.
Incorporation of Risk Attitude: Decision-based and Value-driven design frameworks often calculate the cost of an
outcome and then calculate the utility of said outcome, to incorporate the designer’s attitude towards risk or the marginal
utility of cost. The expected cost can then be calculated as the cost which corresponds to the expected utility of a design.
While this approach is common, it was not used here because risk neutrality was assumed to be normative and to allow
the designer to use cost as a more holistic measure inclusive of other forms of utility not taken into account in the direct
cost of risk. However, future work may demonstrate the traditional certainty-equivalent approach in this context to better
integrate with typical cost modeling practice.
Cost and Probability Modelling: No approach is included here to determine how to model costs and probabilities in a
systematic way to be used with a functional representation. While the authors propose that these may be associated with
past realizations of said functions (as is done for risk and failure modes [16]), future work will need to enumerate how
this would be performed. Additionally, there may be integration costs that are not a part of individual function costs
that may lead to different forms of the design cost function constructed in Section 3, and, as mentioned in Section 3 the
time-value of money may effect the calculation of costs of systems which operate over long timescales.
Feasibility and Non-functional Interactions: As discussed in Section 4, the RISCS score can only be used to compare
designs based on cost and risk information; it cannot tell the designer which designs are technically feasible. It further is
not based on a fully-realized system, but a functional representation, and as a result may not incorporate all interactions,
costs or risks that will eventually occur in that realized system. The authors suggest that to account for these issues, the
use of this design scoring should happen in isolation, but in conjunction with feasibility studies for the compared design
concepts and features, and should further be used such that it can be updated throughout the design process, as more
interactions are included in the design, using dynamic design frameworks such as in [88] to approach the resolution of
epistemic and model uncertainties.
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Appendix A: Monopropellant System Variants
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Fig. 10. Design Variant 1: Redundant Gas Tanks.

Fig. 11. Design Variant 2: Redundant Thrusters.

Corresponding Author: Christopher Hoyle 21 MD-18-1503 Copyright © 2018 by ASME



Fig. 12. Design Variant 3: Heat Recovery System.

Fig. 13. Design Variant 4: Redundant Pressure Regulators.
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Fig. 14. Design Variant 5: Optimized Control Features.
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Table 3. Design and operational changes which may be considered to optimize the adapted RISCS scoring, their related costs, difficulties
to optimization, and value.

Design Change Type Design Change Difficulties Value

Structural New Structure Determining context and pur-
pose, necessary functional re-
lationships, behavior of func-
tions in new contexts.

Most impact and ability to ex-
plore novel solutions.

Redundancy [38] Predicting the effect of poten-
tial performance couplings on
operational costs.

Reduces impact of individual
failures. Enables behavioral
consideration of entire redun-
dant function chains, rather
than those internal to a func-
tion.

Function Order [38] Predicting how function or-
der might change design and
operating costs. Determining
behavioral impact of different
function order.

Potentially inexpensive solu-
tion to lowering risk or reduc-
ing failure effects.

Routing alternative flow paths
(e.g. unused waste flows as
inputs) [38]

Determining if flow path’s
effect on function behavior
given a function’s flow input
requirements.

Ability to create resilience
with less inherent cost in-
crease than in other strategies
(e.g. redundancy, excess ca-
pacity).

Functional Parameters Redundancy Predicting effect of potential
performance couplings.

Easy to model and optimize.
Enables consideration of re-
dundancy without changing
model structure.

Assumed Realization/ Func-
tion Resources [43]

Potential internal and external
compatibility couplings

Ability to represent trade-
off between cost and quality
(mode probabilities and costs
as well as function costs).

Function Modes Couplings with assumed real-
ization.

Ability to represent differ-
ences in behaviors of func-
tions.

Conditional Logic [40] Predicting design cost of flex-
ibility required to allow dif-
ferent decisions to be made.

Enables representing the re-
sponse of control systems and
built-in robustness compen-
sating for failures as well as
sacrificial subsystems, etc.

Operational Modes to recover Computational expense in de-
termining recovery in every
scenario.

Ability to represent resilient
operational decision-making
and repair.

Maintenance and Health
Management [38] [44]

Determining effect on failure
probability given time repre-
sentation. Difficult to model
with fault propagation.

Ability to represent opera-
tional ability to lower fault
probability.
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Table 4. Cost flow state matrix for the monopropellant thrust function, in billions.

Effort Rate Health

Health Zero Low Nominal High Highest

Zero 4.5 4 3.5 4.25 5

Low 4 2.5 1.0 0.75 5

Nominal 3.5 1.0 0 1.0 5

High 4.25 0.5 1.0 2.5 5.5

Highest 5 5 5 5.5 5.5

Table 5. Generated Monopropellant Designs over Different Mission Utilities.

Ctr1 Ctrl1 Ctrl2 Ctrl2 Ctrl3 Ctrl3 Ctrl4 Ctrl4

Low High Low High Low High Low High

Feature Used 0 0 1 1 1 1 0 1

Feature Cost 550000 5000 50000 50000 50000 50000 2050000 5000
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