191 research outputs found

    Understanding Metabolic Adaptation Of T Cells During Activation And Nutrient Limitation

    Get PDF
    Immune cells employ a diverse array of metabolic programs upon stimulation that have far-reaching consequences outside of energy production. Activated T cells require glycolysis to generate the biosynthetic intermediates for proliferation and to enhance effector functions. Due to the disorganized vasculature of solid tumors and the highly glycolytic nature of tumor cells, T cells must compete for glucose with tumor cells in a nutrient-depleted environment. We hypothesized that cells that traffic to inflamed, nutrient-limiting environments in the periphery (effector memory T cells, TEM) may have enhanced abilities to adapt to nutrient limitation compared to cells that largely reside in nutrient-rich lymphoid organs (naïve and central memory T cells, TN and TCM respectively). We demonstrate that TN and TCM rely on fatty acid metabolism to survive and proliferate when glucose is limiting, whereas TEM do not. Furthermore, we find the reliance on fatty acid metabolism in limiting glucose by TN and TCM cells regulates IFN-γ production. Thus the first section of my thesis identifies a novel regulatory interaction between fatty acid synthesis and effector function. Other byproducts of metabolic pathways can also affect immune cell function. Recent work has suggested that reactive oxygen species are released following activation, which promote proliferative signals in T cells such as IL-2 production. The second section of my thesis investigates how T cells increase reactive oxygen species (ROS) production following activation. Using transmission electron microscopy we observe dramatic alterations to mitochondrial morphology following T cell activation. Mitochondria significantly increase in size and their cristae lose parallel patterning during the first 48 hours of T cell activation. Mitochondrial swelling and cristae disturbance are glucose and mTORC1 dependent, and highly reversible. Interestingly, we find that mitochondrial swelling does not correlate to oxidative phosphorylation rate, but strongly correlates to ROS production. We speculate that these mitochondrial changes are required to create the ROS necessary for subsequent IL-2 production and T cell proliferation. Together these data demonstrate novel relationships between cellular metabolism and cytokine production in CD4 T cells. By identifying how metabolites specifically affect immune function, we hope to exploit these discoveries in future cancer immunotherapies

    Circadian Oscillations of Protein-Coding and Regulatory RNAs in a Highly Dynamic Mammalian Liver Epigenome

    Get PDF
    SummaryIn the mouse liver, circadian transcriptional rhythms are necessary for metabolic homeostasis. Whether dynamic epigenomic modifications are associated with transcript oscillations has not been systematically investigated. We found that several antisense RNA, lincRNA, and microRNA transcripts also showed circadian oscillations in adult mouse livers. Robust transcript oscillations often correlated with rhythmic histone modifications in promoters, gene bodies, or enhancers, although promoter DNA methylation levels were relatively stable. Such integrative analyses identified oscillating expression of an antisense transcript (asPer2) to the gene encoding the circadian oscillator component Per2. Robust transcript oscillations often accompanied rhythms in multiple histone modifications and recruitment of multiple chromatin-associated clock components. Coupling of cycling histone modifications with nearby oscillating transcripts thus established a temporal relationship between enhancers, genes, and transcripts on a genome-wide scale in a mammalian liver. The results offer a framework for understanding the dynamics of metabolism, circadian clock, and chromatin modifications involved in metabolic homeostasis

    Prospectus, April 12, 1989

    Get PDF
    https://spark.parkland.edu/prospectus_1989/1007/thumbnail.jp

    The s ---> d gamma decay in and beyond the Standard Model

    Get PDF
    The New Physics sensitivity of the s ---> d gamma transition and its accessibility through hadronic processes are thoroughly investigated. Firstly, the Standard Model predictions for the direct CP-violating observables in radiative K decays are systematically improved. Besides, the magnetic contribution to epsilon prime is estimated and found subleading, even in the presence of New Physics, and a new strategy to resolve its electroweak versus QCD penguin fraction is identified. Secondly, the signatures of a series of New Physics scenarios, characterized as model-independently as possible in terms of their underlying dynamics, are investigated by combining the information from all the FCNC transitions in the s ---> d sector.Comment: 54 pages, 14 eps figure

    Extension of the Chiral Perturbation Theory Meson Lagrangian to Order P6P^6

    Full text link
    We have derived the most general chirally invariant Lagrangian L6{\cal L}_6 for the meson sector at order p6p^6. The result provides an extension of the standard Gasser-Leutwyler Lagrangian L4{\cal L}_4 to one higher order, including as well all the odd intrinsic parity terms in the Lagrangian. The most difficult part of the derivation was developing a systematic strategy so as to get all of the independent terms and eliminate the redundant ones in an efficient way. The 'equation of motion' terms, which are redundant in the sense that they can be transformed away via field transformations, are separated out explicitly. The resulting Lagrangian has been separated into groupings of terms contributing to increasingly more complicated processes, so that one does not have to deal with the full result when calculating p6p^6 contributions to simple processes.Comment: 59 pages in LaTex, using RevTex macro, TRIUMF preprint TRI-PP-94-6

    Direct Molecular Detection and Genotyping of Borrelia burgdorferi from Whole Blood of Patients with Early Lyme Disease

    Get PDF
    Direct molecular tests in blood for early Lyme disease can be insensitive due to low amount of circulating Borrelia burgdorferi DNA. To address this challenge, we have developed a sensitive strategy to both detect and genotype B. burgdorferi directly from whole blood collected during the initial patient visit. This strategy improved sensitivity by employing 1.25 mL of whole blood, a novel pre-enrichment of the entire specimen extract for Borrelia DNA prior to a multi-locus PCR and electrospray ionization mass spectrometry detection assay. We evaluated the assay on blood collected at the initial presentation from 21 endemic area patients who had both physician-diagnosed erythema migrans (EM) and positive two-tiered serology either at the initial visit or at a follow-up visit after three weeks of antibiotic therapy. Results of this DNA analysis showed detection of B. burgdorferi in 13 of 21 patients (62%). In most cases the new assay also provided the B. burgdorferi genotype. The combined results of our direct detection assay with initial physician visit serology resulted in the detection of early Lyme disease in 19 of 21 (90%) of patients at the initial visit. In 5 of 21 cases we demonstrate the ability to detect B. burgdorferi in early Lyme disease directly from whole blood specimens prior to seroconversion

    Community-developed checklists for publishing images and image analysis

    Get PDF
    Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However for scientists wishing to publish the obtained images and image analyses results, there are to date no unified guidelines. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here we present community-developed checklists for preparing light microscopy images and image analysis for publications. These checklists offer authors, readers, and publishers key recommendations for image formatting and annotation, color selection, data availability, and for reporting image analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby heighten the quality of microscopy data is in publications.Comment: 28 pages, 8 Figures, 3 Supplmentary Figures, Manuscript, Essential recommendations for publication of microscopy image dat

    Application of Broad-Spectrum, Sequence-Based Pathogen Identification in an Urban Population

    Get PDF
    A broad spectrum detection platform that provides sequence level resolution of target regions would have a significant impact in public health, case management, and means of expanding our understanding of the etiology of diseases. A previously developed respiratory pathogen microarray (RPM v.1) demonstrated the capability of this platform for this purpose. This newly developed RPM v.1 was used to analyze 424 well-characterized nasal wash specimens from patients presenting with febrile respiratory illness in the Washington, D. C. metropolitan region. For each specimen, the RPM v.1 results were compared against composite reference assay (viral and bacterial culture and, where appropriate, RT-PCR/PCR) results. Across this panel, the RPM assay showed ≥98% overall agreement for all the organisms detected compared with reference methods. Additionally, the RPM v.1 results provide sequence information which allowed phylogenetic classification of circulating influenza A viruses in ∼250 clinical specimens, and allowed monitoring the genetic variation as well as antigenic variability prediction. Multiple pathogens (2–4) were detected in 58 specimens (13.7%) with notably increased abundances of respiratory colonizers (esp. S. pneumoniae) during viral infection. This first-ever comparison of a broad-spectrum viral and bacterial identification technology of this type against a large battery of conventional “gold standard” assays confirms the utility of the approach for both medical surveillance and investigations of complex etiologies of illness caused by respiratory co-infections
    corecore