2,275 research outputs found
Repeat Associated Non-ATG Translation Initiation: One DNA, Two Transcripts, Seven Reading Frames, Potentially Nine Toxic Entities!
Diseases associated with unstable repetitive elements in the DNA, RNA, and amino acids have consistently revealed scientific surprises. Most diseases are caused by expansions of trinucleotide repeats, which ultimately lead to diseases like Huntington's disease, myotonic dystrophy, fragile X syndrome, and a series of spinocerebellar ataxias. These repeat mutations are dynamic, changing through generations and within an individual, and the repeats can be bi-directionally transcribed. Unsuspected modes of pathogenesis involve aberrant loss of protein expression; aberrant over-expression of non-mutant proteins; toxic-gain-of-protein function through expanded polyglutamine tracts that are encoded by expanded CAG tracts; and RNA-toxic-gain-of-function caused by transcripts harboring expanded CUG, CAG, or CGG tracts. A recent advance reveals that RNA transcripts with expanded CAG repeats can be translated in the complete absence of a starting ATG, and this Repeat Associated Non-ATG translation (RAN-translation) occurs across expanded CAG repeats in all reading frames (CAG, AGC, and GCA) to produce homopolymeric proteins of long polyglutamine, polyserine, and polyalanine tracts. Expanded CTG tracts expressing CUG transcripts also show RAN-translation occurring in all three frames (CUG, UGC, and GCU), to produce polyleucine, polycysteine, and polyalanine. These RAN-translation products can be toxic. Thus, one unstable (CAG)•(CTG) DNA can produce two expanded repeat transcripts and homopolymeric proteins with reading frames (the AUG-directed polyGln and six RAN-translation proteins), yielding a total of potentially nine toxic entities. The occurrence of RAN-translation in patient tissues expands our horizons of modes of disease pathogenesis. Moreover, since RAN-translation counters the canonical requirements of translation initiation, many new questions are now posed that must be addressed. This review covers RAN-translation and some of the pertinent questions
The Imprinted Retrotransposon-Like Gene PEG11 (RTL1) Is Expressed as a Full-Length Protein in Skeletal Muscle from Callipyge Sheep
peer-reviewedMembers of the Ty3-Gypsy retrotransposon family are rare in mammalian genomes despite their abundance in invertebrates and some vertebrates. These elements contain a gag-pol-like structure characteristic of retroviruses but have lost their ability to retrotranspose into the mammalian genome and are thought to be inactive relics of ancient retrotransposition events. One of these retrotransposon-like elements, PEG11 (also called RTL1) is located at the distal end of ovine chromosome 18 within an imprinted gene cluster that is highly conserved in placental mammals. The region contains several conserved imprinted genes including BEGAIN, DLK1, DAT, GTL2 (MEG3), PEG11 (RTL1), PEG11as, MEG8, MIRG and DIO3. An intergenic point mutation between DLK1 and GTL2 causes muscle hypertrophy in callipyge sheep and is associated with large changes in expression of the genes linked in cis between DLK1 and MEG8. It has been suggested that over-expression of DLK1 is the effector of the callipyge phenotype; however, PEG11 gene expression is also strongly correlated with the emergence of the muscling phenotype as a function of genotype, muscle type and developmental stage. To date, there has been no direct evidence that PEG11 encodes a protein, especially as its anti-sense transcript (PEG11as) contains six miRNA that cause cleavage of the PEG11 transcript. Using immunological and mass spectrometry approaches we have directly identified the full-length PEG11 protein from postnatal nuclear preparations of callipyge skeletal muscle and conclude that its over-expression may be involved in inducing muscle hypertrophy. The developmental expression pattern of the PEG11 gene is consistent with the callipyge mutation causing recapitulation of the normal fetal-like gene expression program during postnatal development. Analysis of the PEG11 sequence indicates strong conservation of the regions encoding the antisense microRNA and in at least two cases these correspond with structural or functional domains of the protein suggesting co-evolution of the sense and antisense genes
Triplet repeat DNA structures and human genetic disease: dynamic mutations from dynamic DNA.
Fourteen genetic neurodegenerative diseases and three fragile sites have been associated with the expansion of (CTG)n (CAG)n, (CGG)n (CCG)n, or (GAA)n (TTC)n repeat tracts. Different models have been proposed for the expansion of triplet repeats, most of which presume the formation of alternative DNA structures in repeat tracts. One of the most likely structures, slipped strand DNA, may stably and reproducibly form within triplet repeat sequences. The propensity to form slipped strand DNA is proportional to the length and homogeneity of the repeat tract. The remarkable stability of slipped strand DNA may, in part, be due to loop-loop interactions facilitated by the sequence complementarity of the loops and the dynamic structure of three-way junctions formed at the loop-outs
RNA-Mediated Neurodegeneration Caused by the Fragile X Premutation rCGG Repeats in Drosophila
AbstractFragile X syndrome carriers have FMR1 alleles, called premutations, with an intermediate number of 5′ untranslated CGG repeats between patients (>200 repeats) and normal individuals (<60 repeats). A novel neurodegenerative disease has recently been appreciated in some premutation carriers. As no neurodegeneration is seen in fragile X patients, who do not express FMR1, we hypothesize that lengthened rCGG repeats of the premutation transcript may lead to neurodegeneration. Here, using Drosophila melanogaster, we show that 90 rCGG repeats alone are sufficient to cause neurodegeneration. This phenotype is neuron specific and rCGG repeat dosage sensitive. Although devoid of mutant protein, this neurodegeneration exhibits neuronal inclusion bodies that are Hsp70 and ubiquitin positive. Overexpression of Hsp70 could suppress the neurodegeneration. These results demonstrate that neurodegenerative phenotype associated with fragile X premutation is indeed caused by the lengthened rCGG repeats and provide the first in vivo experimental demonstration of RNA-mediated neurodegeneration
Methodological Challenges in Describing Medication Dosing Errors in Children
Summary: Although children are prescribed medications in 30 percent to 50 percent of clinic visits, little is known about medication errors in ambulatory pediatrics. In the process of completing a study to determine the prevalence of outpatient dosing errors, we identified a number of barriers to understanding the epidemiology of medication errors in children. These barriers include prescribing medication that is not labeled for use in children, discrepancies in published dosing recommendations for many medications, unclear guidelines on use of adult dosing recommendations for children of different ages and weights, and the lack of readily available documented weights to determine appropriate weight-based doses for children. In our study of pediatric medication errors, we found a wide range of doses prescribed to children for every medication we studied. Before we can truly understand medication errors in children and begin developing systems-based approaches to eliminating these errors, we need better national standards of medication doses that are appropriate for children and an improved ability to determine errors through databases that include children\u27s weights as well as prescription information
Differential effects of retinoic acid isomers on the expression of nuclear receptor co-regulators in neuroblastoma
AbstractRetinoic acid modulates growth and induces differentiation and apoptosis of neuroblastoma cells in vitro, with the all-trans and 9-cis isomers having different biological properties. Transcriptional activation in response to retinoic acid isomers is mediated by retinoic acid receptors and retinoid X receptors. The differential expression of co-activators and co-repressors which preferentially interact with retinoic acid receptors or retinoid X receptors may be a mechanism leading to different cellular responses to 9-cis and all-trans retinoic acid. To test this hypothesis, we have studied the expression of the nuclear receptor co-regulators TIF1α, TIF1β, SUG1 and SMRT in the N-type and S-type neuroblastoma cell lines SH SY 5Y and SH S EP. Transcripts for all four co-regulators were expressed in these neuroblastoma cells. The expression of TIF1α, TIF1β and SUG1 did not change in response to retinoic acid; however, SMRT was induced in both neuroblastoma cell lines, but particularly by all-trans retinoic acid in SH S EP cells. An additional co-activator, Trip3, was isolated by differential mRNA display and shown to be preferentially induced by 9-cis retinoic acid in SH SY 5Y and SH S EP cells. These data suggest that retinoic acid isomer-specific induction of nuclear receptor co-regulators may determine, in part, the differential biological effects of retinoic acid isomers
Determinants of R-loop formation at convergent bidirectionally transcribed trinucleotide repeats
R-loops have been described at immunoglobulin class switch sequences, prokaryotic and mitochondrial replication origins, and disease-associated (CAG)n and (GAA)n trinucleotide repeats. The determinants of trinucleotide R-loop formation are unclear. Trinucleotide repeat expansions cause diseases including DM1 (CTG)n, SCA1 (CAG)n, FRAXA (CGG)n, FRAXE (CCG)n and FRDA (GAA)n. Bidirectional convergent transcription across these disease repeats can occur. We find R-loops formed when CTG or CGG and their complementary strands CAG or CCG were transcribed; GAA transcription, but not TTC, yielded R-loops. R-loop formation was sensitive to DNA supercoiling, repeat length, insensitive to repeat interruptions, and formed by extension of RNA:DNA hybrids in the RNA polymerase. R-loops arose by transcription in one direction followed by transcription in the opposite direction, and during simultaneous convergent bidirectional transcription of the same repeat forming double R-loop structures. Since each transcribed disease repeat formed R-loops suggests they may have biological functions
The Imprinted Retrotransposon-Like Gene PEG11 (RTL1) Is Expressed as a Full-Length Protein in Skeletal Muscle from Callipyge Sheep
Members of the Ty3-Gypsy retrotransposon family are rare in mammalian genomes despite their abundance in invertebrates and some vertebrates. These elements contain a gag-pol-like structure characteristic of retroviruses but have lost their ability to retrotranspose into the mammalian genome and are thought to be inactive relics of ancient retrotransposition events. One of these retrotransposon-like elements, PEG11 (also called RTL1) is located at the distal end of ovine chromosome 18 within an imprinted gene cluster that is highly conserved in placental mammals. The region contains several conserved imprinted genes including BEGAIN, DLK1, DAT, GTL2 (MEG3), PEG11 (RTL1), PEG11as, MEG8, MIRG and DIO3. An intergenic point mutation between DLK1 and GTL2 causes muscle hypertrophy in callipyge sheep and is associated with large changes in expression of the genes linked in cis between DLK1 and MEG8. It has been suggested that over-expression of DLK1 is the effector of the callipyge phenotype; however, PEG11 gene expression is also strongly correlated with the emergence of the muscling phenotype as a function of genotype, muscle type and developmental stage. To date, there has been no direct evidence that PEG11 encodes a protein, especially as its anti-sense transcript (PEG11as) contains six miRNA that cause cleavage of the PEG11 transcript. Using immunological and mass spectrometry approaches we have directly identified the full-length PEG11 protein from postnatal nuclear preparations of callipyge skeletal muscle and conclude that its over-expression may be involved in inducing muscle hypertrophy. The developmental expression pattern of the PEG11 gene is consistent with the callipyge mutation causing recapitulation of the normal fetal-like gene expression program during postnatal development. Analysis of the PEG11 sequence indicates strong conservation of the regions encoding the antisense microRNA and in at least two cases these correspond with structural or functional domains of the protein suggesting co-evolution of the sense and antisense genes
- …