297 research outputs found
3-D kinematic comparison of treadmill and overground running.
Studies investigating the mechanics of human movement are often conducted using the treadmill. The treadmill is an attractive device for the analysis of human locomotion. Studies comparing overground and treadmill running have analyzed discrete variables, however differences in excursion from footstrike to peak angle and range of motion during stance have yet to be examined. This study aimed to examine the 3-D kinematics of the lower extremities during overground and treadmill locomotion to determine the extent to which the two modalities differ. Twelve participants ran at 4.0m/s in both treadmill and overground conditions. 3-D angular kinematic parameters during the stance phase were collected using an eight camera motion analysis system. Hip, knee and ankle joint kinematics were quantified in the sagittal, coronal and transverse planes, then compared using paired t-tests. Of the parameters analyzed hip flexion at footstrike 12° hip range of motion 17°, peak hip flexion 12.7°, hip transverse plane range of motion 8° peak knee flexion 5° and peak ankle excursion range 6.6°, coronal plane ankle angle at toe-off 6.5° and peak ankle eversion 6.3° were found to be significantly different. These results lead to the conclusion that the mechanics of treadmill locomotion cannot be generalized to overground
The Partition Function of Multicomponent Log-Gases
We give an expression for the partition function of a one-dimensional log-gas
comprised of particles of (possibly) different integer charge at inverse
temperature {\beta} = 1 (restricted to the line in the presence of a
neutralizing field) in terms of the Berezin integral of an associated non-
homogeneous alternating tensor. This is the analog of the de Bruijn integral
identities [3] (for {\beta} = 1 and {\beta} = 4) ensembles extended to
multicomponent ensembles.Comment: 14 page
Quantitative Magnetization Transfer in In Vivo Healthy Human Skeletal Muscle at 3 T
The value of quantitative MR methods as potential biomarkers in neuromuscular disease is being increasingly recognized. Previous studies of the magnetization transfer ratio have demonstrated sensitivity to muscle disease. The aim of this work was to investigate quantitative magnetization transfer imaging of skeletal muscle in healthy subjects at 3 T to evaluate its potential use in pathological muscle. The lower limb of 10 subjects was imaged using a 3D fast low-angle shot acquisition with variable magnetization transfer saturation pulse frequencies and amplitudes. The data were analyzed with an established quantitative two-pool model of magnetization transfer. T1 and B1 amplitude of excitation radiofrequency field maps were acquired and used as inputs to the quantitative magnetization transfer model, allowing properties of the free and restricted proton pools in muscle to be evaluated in seven different muscles in a region of interest analysis. The average restricted pool T2 relaxation time was found to be 5.9 ± 0.2μs in the soleus muscle and the restricted proton pool fraction was 8 ± 1%. Quantitative magnetization transfer imaging of muscle offers potential new biomarkers in muscle disease within a clinically feasible scan time. Magn Reson Med, 2010. © 2010 Wiley-Liss, Inc
Correlation Functions for \beta=1 Ensembles of Matrices of Odd Size
Using the method of Tracy and Widom we rederive the correlation functions for
\beta=1 Hermitian and real asymmetric ensembles of N x N matrices with N odd.Comment: 15 page
Cellular Models of Aggregation-Dependent Template-Directed Proteolysis to Characterize Tau Aggregation Inhibitors for Treatment of Alzheimer's Disease
Copyright © 2015, The American Society for Biochemistry and Molecular Biology. Acknowledgements-We thank Drs Timo Rager and Rolf Hilfiker (Solvias, Switzerland) for polymorph analyses.Peer reviewedPublisher PD
Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?
Thermal performance curves (TPCs), which quantify how an ectotherm\u27s body temperature (Tb ) affects its performance or fitness, are often used in an attempt to predict organismal responses to climate change. Here, we examine the key - but often biologically unreasonable - assumptions underlying this approach; for example, that physiology and thermal regimes are invariant over ontogeny, space and time, and also that TPCs are independent of previously experienced Tb. We show how a critical consideration of these assumptions can lead to biologically useful hypotheses and experimental designs. For example, rather than assuming that TPCs are fixed during ontogeny, one can measure TPCs for each major life stage and incorporate these into stage-specific ecological models to reveal the life stage most likely to be vulnerable to climate change. Our overall goal is to explicitly examine the assumptions underlying the integration of TPCs with Tb , to develop a framework within which empiricists can place their work within these limitations, and to facilitate the application of thermal physiology to understanding the biological implications of climate change
Random-matrix theory of amplifying and absorbing resonators with PT or PTT' symmetry
We formulate gaussian and circular random-matrix models representing a
coupled system consisting of an absorbing and an amplifying resonator, which
are mutually related by a generalized time-reversal symmetry. Motivated by
optical realizations of such systems we consider a PT or a PTT' time-reversal
symmetry, which impose different constraints on magneto-optical effects, and
then focus on five common settings. For each of these, we determine the
eigenvalue distribution in the complex plane in the short-wavelength limit,
which reveals that the fraction of real eigenvalues among all eigenvalues in
the spectrum vanishes if all classical scales are kept fixed. Numerically, we
find that the transition from real to complex eigenvalues in the various
ensembles display a different dependence on the coupling strength between the
two resonators. These differences can be linked to the level spacing statistics
in the hermitian limit of the considered models.Comment: 19 pages, 9 figure
Extra-ocular muscle MRI in genetically-defined mitochondrial disease
Conventional and quantitative MRI was performed in patients with chronic progressive external ophthalmoplegia (CPEO), a common manifestation of mitochondrial disease, to characterise MRI findings in the extra-ocular muscles (EOMs) and investigate whether quantitative MRI provides clinically relevant measures of disease
A generalized plasma and interpolation between classical random matrix ensembles
The eigenvalue probability density functions of the classical random matrix
ensembles have a well known analogy with the one component log-gas at the
special couplings \beta = 1,2 and 4. It has been known for some time that there
is an exactly solvable two-component log-potential plasma which interpolates
between the \beta =1 and 4 circular ensemble, and an exactly solvable
two-component generalized plasma which interpolates between \beta = 2 and 4
circular ensemble. We extend known exact results relating to the latter --- for
the free energy and one and two-point correlations --- by giving the general
(k_1+k_2)-point correlation function in a Pfaffian form. Crucial to our working
is an identity which expresses the Vandermonde determinant in terms of a
Pfaffian. The exact evaluation of the general correlation is used to exhibit a
perfect screening sum rule.Comment: 21 page
Instrumental performance and results from testing of the BLAST-TNG receiver, submillimeter optics, and MKID arrays
Polarized thermal emission from interstellar dust grains can be used to map
magnetic fields in star forming molecular clouds and the diffuse interstellar
medium (ISM). The Balloon-borne Large Aperture Submillimeter Telescope for
Polarimetry (BLASTPol) flew from Antarctica in 2010 and 2012 and produced
degree-scale polarization maps of several nearby molecular clouds with
arcminute resolution. The success of BLASTPol has motivated a next-generation
instrument, BLAST-TNG, which will use more than 3000 linear polarization
sensitive microwave kinetic inductance detectors (MKIDs) combined with a 2.5m
diameter carbon fiber primary mirror to make diffraction-limited observations
at 250, 350, and 500 m. With 16 times the mapping speed of BLASTPol,
sub-arcminute resolution, and a longer flight time, BLAST-TNG will be able to
examine nearby molecular clouds and the diffuse galactic dust polarization
spectrum in unprecedented detail. The 250 m detector array has been
integrated into the new cryogenic receiver, and is undergoing testing to
establish the optical and polarization characteristics of the instrument.
BLAST-TNG will demonstrate the effectiveness of kilo-pixel MKID arrays for
applications in submillimeter astronomy. BLAST-TNG is scheduled to fly from
Antarctica in December 2017 for 28 days and will be the first balloon-borne
telescope to offer a quarter of the flight for "shared risk" observing by the
community.Comment: Presented at SPIE Millimeter, Submillimeter, and Far-Infrared
Detectors and Instrumentation for Astronomy VIII, June 29th, 201
- …