13 research outputs found

    The problem with delineating narrow criteria for citizen science

    Get PDF
    No abstract available.http://www.pnas.org2020-01-30hj2019Forestry and Agricultural Biotechnology Institute (FABI

    Remote sensing of night lights — beyond DMSP

    No full text
    Remote sensing of night lights differs from other sources of remote sensing in its ability to directly observe human activity from space as well as in informing us on a new type of anthropogenic threat, that of light pollution. This special issue focuses on studies which used newer sensors than the Defense Meteorological Satellite Program - Operational Line-Scan System (DMSP/OLS). Most of the analyses focused on data from the Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime sensor (also called the Day/Night Band, or VIIRS/DNB in short), for which the first instrument in the series was launched in 2011. In this editorial, we provide an overview of the 12 papers published in this special issue, and offer suggestions for future research directions in this field, both with respect to the remote sensing platforms and algorithms, and with respect to the development of new applications

    Beyond All-Sky: Assessing Ecological Light Pollution Using Multi-Spectral Full-Sphere Fisheye Lens Imaging

    No full text
    Artificial light at night is a novel anthropogenic stressor. The resulting ecological light pollution affects a wide breadth of biological systems on many spatio-temporal scales, from individual organisms to communities and ecosystems. However, a widely-applicable measurement method for nocturnal light providing spatially resolved full-spectrum radiance over the full solid angle is still missing. Here, we explain the first step to fill this gap, by using a commercial digital camera with a fisheye lens to acquire vertical plane multi-spectral (RGB) images covering the full solid angle. We explain the technical and practical procedure and software to process luminance and correlated color temperature maps and derive illuminance. We discuss advantages and limitations and present data from different night-time lighting situations. The method provides a comprehensive way to characterize nocturnal light in the context of ecological light pollution. It is affordable, fast, mobile, robust, and widely-applicable by non-experts for field work

    Remote sensing of night lights: A review and an outlook for the future

    No full text
    Remote sensing of night light emissions in the visible band offers a unique opportunity to directly observe human activity from space. This has allowed a host of applications including mapping urban areas, estimating population and GDP, monitoring disasters and conflicts. More recently, remotely sensed night lights data have found use in understanding the environmental impacts of light emissions (light pollution), including their impacts on human health. In this review, we outline the historical development of night-time optical sensors up to the current state of the art sensors, highlight various applications of night light data, discuss the special challenges associated with remote sensing of night lights with a focus on the limitations of current sensors, and provide an outlook for the future of remote sensing of night lights. While the paper mainly focuses on space borne remote sensing, ground based sensing of night-time brightness for studies on astronomical and ecological light pollution, as well as for calibration and validation of space borne data, are also discussed. Although the development of night light sensors lags behind day-time sensors, we demonstrate that the field is in a stage of rapid development. The worldwide transition to LED lights poses a particular challenge for remote sensing of night lights, and strongly highlights the need for a new generation of space borne night lights instruments. This work shows that future sensors are needed to monitor temporal changes during the night (for example from a geostationary platform or constellation of satellites), and to better understand the angular patterns of light emission (roughly analogous to the BRDF in daylight sensing). Perhaps most importantly, we make the case that higher spatial resolution and multispectral sensors covering the range from blue to NIR are needed to more effectively identify lighting technologies, map urban functions, and monitor energy use
    corecore